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The theory of thermodynamic stability is worked out in terms of composite systems starting
from basic principles formulated partially in operational language. In this connection a macro-
scopic ordering concept is introduced, and entropy is characterized as numerical measure for the
degree of disorder. Various aspects of thermodynamic stability are investigated in operational
and analytical terms laying special emphasis on appropriate neighbourhood sets. Some implica-
tions of metastability and neutral stability for the thermodynamic system concept are pursued.

1. Introduction

The general theory of thermodynamic equilibrium
is due to Gibbs [1], who founded his classical
investigations on the following principle: “For the
equilibrium of any isolated system it is necessary
and sufficient that in all possible variations of the
state of the system which do not alter its energy,
the variation of its entropy shall either vanish or
be negative.” In spite of the enormous fruitfulness
of the theory which Gibbs developed from this
axiom the literal formulation of the principle itself
is unclear to the point of being paradoxical [2]: If
an isolated thermodynamic system is not in
equilibrium we cannot assign any definite value of
the entropy to it (in the realm of equilibrium
thermodynamics), and if the system is in equilib-
rium then the entropy cannot vary. In the sub-
sequent efforts to clarify the concepts in Gibbs’
principle, many authors made use of the notion
of “virtual states” the considered system should
take on. Eventually it turned out, however, that
normal equilibrium states are perfectly suited if
one does not vary over the original state space but
over that of a more complex system, which in many
cases is to be chosen as a decomposition of the
original system into two subsystems (confer e.g. [3],
[4], [5], [6]). In [2] and [6] one finds not only a
detailed exposition of this composite system
approach to thermodynamic stability — as well as
historical remarks —, but also the interesting
observation that this approach gives fundamental
importance to the so-called thermodynamic opera-
tions which consist of the compcsition or decom-
position of thermodynamic systems or the im-
posture or relaxation of a constraint. These opera-
tive devices had not been incorporated into the
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formalized structure of the theory hitherto, but,
of course, were used implicitly. Indeed, if the most
fundamental principle of the theory requires for its
selfconsistent explication the transition from the
considered system to more constrained ones, then
this comparison of different systems — made from
one and the same material body — must represent
for itself most fundamental structural features. We
have interpreted this comparison as the essential
part of a macroscopic ordering concept, which after
some supplements is to be considered as the basic
operative structure of the entropy observable.

In a separate work the formal elaboration of this
idea is carried through. One starts with the implicit
definition of the thermodynamic operations and
defines then a (quasi) ordering (representing
physical disorder) with these concepts as a mathe-
matical relation in the set of all system-states under
consideration. This relation is then shown to have
the structure of an extensive empirical observable
and is identified with the entropy observable. With
such an approach the entropy is characterized by
an ordering structure in the sense of fundamental
measurement, that means that in principle it may
be measured without recourse to other observables
introduced previously as, e.q., heat and absolute
temperature.

This kind of approach is only described in Sect. 2
of the present paper. Nevertheless, it provides the
possibility to connect entropy with operational and
ordering concepts in the subsequent reasonings and
to clarify therewith some points otherwise not being
accessible.

Since entropy is by the way of its introduction a
numerical measure for the macroscopic disorder, a
so-called order homomorphism, Gibbs’ fundamental
maximum principle of entropy can be derived — if
some additional properties of the compared system-
states are valid. This refinement, which also reveals
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new aspects of the mnotion of thermodynamic
stability, is investigated in Section 3. The stability
condition is there formulated in the vein of the
composite system approach but uses only the
formalized symbols for thermodynamic operations.
This language also enables us to work out a suitable
concept of a thermodynamic system. After having
postulated only local thermodynamic stability a
system concept emerges with a single-valued
entropy fundamental function certainly, but with
also the possibility of constitutional changes by
means of unstable relaxations.

In Sect. 4 the analytical formulations of thermo-
dynamic stability conditions are derived, and
special emphasis is laid on the topology of appro-
priate domains in the state spaces of extensive as
well as of density variables over which a system is
stable. These investigations serve to discuss the
physical consequences of special types of stability
over bounded regions of states.

Some implications of metastability and neutral
stability are investigated in Chapter 5, others will
be given on another occasion.

Let as add a word on the relationship between a
purely phenomenological exposition of stability and
the maximum principle of entropy as given here,
and a statistical foundation of these structures as
treated in [7]. Since the statistical mechanical
theory leads to usual thermodynamic laws only
after some peculiar idealizations it is indispensable
to formulate the theory to be derived as concise as
possible. We find it very satisfying that our basic
operational notions appear in a natural reformula-
tion also in a statistical theory and we hope that this
connection will lead to some clarifications in the old
problem of founding thermodynamics on a statis-
tical-microscopic theory.

2. Basie Assumptions

The set of assumptions presented in this Section
is meant to describe (implicitly) the most charac-
teristic features of thermodynamic systems with
the exception of the third law. It is, however, not
a coherent axiomatic scheme, and critical comments
will be given at the appropriate places. Anyhow, it
is a concise formulation of the properties we shall
use to derive further statements on the considered
systems. One more assumption will be formulated
in Section 3.
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The collection of physical systems X which
concern us here will be denoted by #. Every
2 e, called “thermodynamic system”, assumes
states Z in a certain set €5, and we write (X, Z) to
indicate that X is in the state Z. The use of the
system-state pair (X, Z), sometimes shortened by
a single symbol like P, enables us to replace Z by a
tuple of state variables (see below) without loosing
the detachedness to a specific system 2. As basic
set for the various relations to be introduced in the
sequel, which in general relate system-states of
different systems with each other, we consider

F:= 1) L] {&&%).

XeB Ze¥y

(2.1)

The starting point of our approach is the charac-
terization of states by means of extensive observ-
ables. Here we understand by an extensive observ-
able on Z the following structure.

2.1. Definition. An extensive observable F on &
consists of a family {F,;aec A} of (empirically
determinable) state functions

F,: s —R, acAscA,
where 4= |_J A45. Every non-empty A4y contains
Ze#

a special subset Ey so that Ay is isomorphic to the
set of all subsets of Ey: As3a <~ E,c Ex, and it
holds
Fo=> Fu.
a’€Ea

For a € Ay F, is called an observable of the kind F
of X, for a € Ex (i.e. a < {a}) F, is an elementary
observable of the kind F of 2. For a - E; F, is
called the total observable of the kind F of 2.

Let be given 2;,22e# and ayeAdy and
as € Ay,. Then the composed system Y= (27, Xs)
(cf. (ITL.1) below) has at least the following observ-
ables of the kind F: Fy1, Fyz and Fy= Fg1 + Foo,
where Eq = E41 U Egz2. This makes the extensivity
property of F explicit. A more detailed exposition
of the empirical structure of extensive observables
will be given on another occasion.

We are now ready to formulate our basic assump-
tions which will be grouped together by means of
romanic numerals*.

(I) State variables

(I.1) There exists a distinguished set {F;
1<p<r} of extensive observables F, on &, so

* The content of an assumption (I.i) extends from (L.i)
up to the next break.
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that 4,==0 for all 1 <p <r. F is the energy and
A15=+0 for all YeHB. Fy,...,Fqs, 2=<0<r, are
various kinds of work (or deformation) coordinates.

The energy observables are often denoted by U,,
the work observables by Ay, 2<p=oc. The
observables Fyq, a € Apy, are called the inhibited
extensive observables of X.

(I.2) For every X e % exists a fixed (but not
unique) set of elementary extensive observables F'm,
1<m =n, where Fm e F, for some p, so that the
states Z € €» are in one-to-one correspondence with
the n-tuples (Z1, ..., Z") := (F1(Z), ..., F*(Z)).

The F1 ... Fn are called the state variables of 2.
We shall identify Z with the n-tuple (Z1, ..., Z").

2.2. Definition. X € & is called a work system if
all its state variables can be chosen as work observ-
ables. The set of all work systems will be denoted
by Bw. Br:= B\Aw is called the set of proper
thermodynamic systems.

(I.3) Zw is a non-trivial subset of Z.

We stipulate throughout the paper that the state
variables are to be chosen to include as few energy
observables as possible. So will be the state variables
of a work system in fact work coordinates.

(I.4) The state variables of a proper thermo-
dynamic system include at least one energy observ-

able.

(I.5) The set of all state tuples of 2'e Zr con-
stitute a cone in R”.

The set of all state tuples of X' will again be
denoted by %5.

Observe that (I.4) implies the possibility of heat
contact for proper thermodynamic systems, the
energy being independent of all other (macroscopic)
state variables.

We denote by #. the set of systems in # which
have at least two state variables of the same kind
and write %s for #\#.. The systems in Hs are
called “simple” (or “totally reduced’), those in %,
are called “complex”. We index here and in other
cases the subset of Z in the same manner as the
corresponding subsets of #. So we write

905: U {<2:Z>}

ZeBe Ze€yx

and the like for Zs, P71, Pw etc.; Px is given by
U (2.2}

Ze€y

(2.2)
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(II) Thermodynamic operations

(IT.1) Composition of systems. For every
21, Yo € B there exists the “composite system”
(21, 292) € # with

€z 2= €5, X €, (2.3)
The system composition is associative.
For system-states P € Z 5, r,) we write
P ={(21,25),(Z1,22)) =: (P1, P2)  (24)

where

P12=<Zi,Zi>, i=1,2.

The intuitive meaning of (X7, X) is the combination
of X7 and X5 without interaction.

(IL.2) Relaxation of a constraint. There
exists a relation* R c Z x & with domain Z. and
range . Let be X not of the form Y= (2r, XZw),
2reBr, EweBw. Then (X, Z) R(2X',Z"y shall
imply the following connection between the state
tuples: There are components Z¢, Z7 of Z belonging
to state variables of the same kind, so that Z’ has
one component Z¢-+ZJ whereas the remaining
components of Z" are equal to the Zm of Z, m <=1, j.
If

(X, 2y =27, 2w), (Zr,Zw))

then (X,Z) R(X',Z") implies either the afore
mentioned connection between Z and Z’, where the
affected coordinates Z? and ZJ/ are not work
coordinates of the same kind in Zt and Zw respec-
tively, or the following possibility may occur: In
the transition from Z to Z’ a pair of work coordinates
Al of Zp and A™ of Zw is replaced by A+ A™ and
an elementary energy Ut of Zr is substituted by a
not uniquely determined U?, energy conservation
for 2 being presupposed ; the remaining components
of Z reappear unaltered in Z'.

In (I1.2) we have introduced a global relaxation
relation which may be considered as the union of
more specified relaxation relations depending on the
coordinates which they affect. One convinces one-
self that our definition of R implies conservation of
all total observables in the transition from (X, Z)

* A relation X is a set of ordered pairs. For (a,b) € X
we write also a Xb. The domain Z(X) is the set {a;aXb
for some b}, the range #(X) is {b;aXb for some a}.
aX1b<bXa; (a,b) € X1 0 Xo < 3¢ with (a, c) € X; and
(c,b) e Xo. X1 Xy and X; U Xy are defined as in set
theory. The diagonal relation A(4) of a set 4 is {(a, a);
acAd}.
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to (X',Z"). 2" is in any case different from X,
because the number of its state variables is one less
than that of 2. And in general there cannot be said
more about the relationship between X and 2.

The intuitive meaning of the R-operation is the
removal of an internal constraint of a closed
system 2, which allows for the exchange of a pair
of extensive variables which were inhibited in X.
The physical realization of such an internal con-
straint — in the form of a wall or the like — as well
as the process of its removal is assumed not to be
of energetical significance in comparison to the
energies of the systems. The realization of certain
R-operations may well be complicated to achieve,
since the invariance of some state variables in
connection with the variability of other ones may
be a difficult task. In this connection let us em-
phasize two points:

(1) A relation like the R-operation only sets up a
relationship between the initial and the final
system-state and does not imply any restrictions
for what happens during the concrete transition.
(So closedness of the system may temporarily be
given up in the concretization of an R-relation.)

(2) A relation which is elementary in the logical
sense must not necessarily be simple in the practical
realization.

(IL.3) Reversible inhibition. There exists a
relation I c# x % with Ic R-1 which has the
domain Z and the range strictly smaller than Z;.

By definition (X", Z") I<X,Z) implies <X, Z)
R(X',Z"y, and we have the same connections
between Z and Z’ as specified in (II1.2).

The intuitive meaning of I is the imposture of an
internal constraint in a specific way, namely so as
not to disturb internal equilibrium. This intended
meaning of I is not formalized by Assumption (I1.3)
alone, but would require additional postulates on
the compatibility between R and I and the like,
which will not be given here (cf. [8]). In the present
formulation the meaning of I emerges from the
summed up Assumption (III) below. Here it may
suffice as motivation to introduce I as basic
operational concept that one can give relatively
simple practical criteria which decide over the
validity of I.

Having accepted the relations R and I as
fundamental notions one is able to define a macro-
scopic ordering structure.

Composite System Approach to Thermodynamic Stability
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2.3. Definition. (i) For P, P’ € 2 we write
P < P (2.5)

and say “P’ is more disordered than P, if there
are system-states Poe Pr, Q,Q € Zxy and a
product I7(R, I) containing finitely many relations
R and I in arbitrary order, so that

(P, Po,Q)II(R, I) (P', Po,Q') (2.6)

is valid; the case that I/ (R, I) is an empty product
shall be included into (2.6) and shall then be
interpreted as the diagonal relation A4 (%) for the

composite system-states framing the relation
symbol.
(ii) We write
P~P (2.7)

and say that P and P’ are “order equivalent”, if
PP and P QP (2.8)

are valid.

The relation <] is reflexive and transitive as
follows easily from the definition and the fact, that
the composition of two work-systems is again a
work-system. Such a relation is called “quasi-
ordering” (in [9] it is called “‘transition relation”),
and it differs from a (partial) ordering by the lack
of the property <] N[> = A(#); that is: order
equivalence does not imply equality.

The intuitive meaning of (2.6) is an active
formulation of ‘“adiabatic enclosure’, since we do
not describe the properties of the walls which
separate an adiabatically closed system from the
surroundings but list up the operations on the
system which are still possible for a system-state
P=<X,Z> under adiabatic enclosure and which
bring it to the system-state P'={X",Z"). The
possibilities incorporated into (2.6) are: finitely
many internal relaxations of constraints, reversible
inhibitions, and work contacts, where an arbitrary
system-state Py may be taken under the adiabatic
enclosure if it remains unchanged in the sense that
its final form is the same as the initial one.

A satisfying feature of this active operational
approach is the interpretability of the adiabatic
enclosure relation <] as an intuitive appealing
physical disorder concept in purely macroscopic
terms. It will first probably be accepted that one
and the same material body (observe that the total
mass is conserved in (2.6)) is in a more disordered
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constitution (described by a system-state), if it has
less internal constraints which keep up differences
in the intensive variables, and that reversible
inhibitions do not change the degree of disorder.
As for the work contacts the same intuitive dis-
order concept may be applied to the internal degrees
of freedom of a proper thermodynamic system not
showing up in the state coordinates. They must
exist, since the energy of such a system can be
varied independently from all other macroscopic
state variables. These internal degrees of freedom
cannot be inhibited by the coarse work coordinates.
Thus a work contact can only increase (or maintain)
the degree of disorder. Let us stress, that the latter
considerations on the internal degrees of freedom
serve only for motivational purposes whereas the
formalized disorder concept makes solely use of
macroscopic observables.

The most interesting point is now, that the
quasi-ordering <] gives rise to an empirical,
extensive observable as formulated in [9]. That
means that the structural properties of < give
itself a prescription how to associate a (rational)
number for the degree of order and the scale is
unique up to positive dilatations and translations
(cf. [8]). By extrapolation one gets in this manner a
continuous entropy function which measures the
macroscopic disorder. We cannot present here this
reasoning in its full extent but summarize the
resulting properties of the thus obtained entropy
observable in form of assumptions.

(IIT) Entropy

(ITI.1) There is an order homomorphic mapping

S: 2 — Ry (2.9)
ie.

PP = S(P)ZS(P). (2.10)
The value

S(P)=8(K2,2)) = 8:(2) (2.11)

is called the entropy of (X, Z). For fixed X the
mapping

Sy: €5 — Ry (2.12)

given by (2.11) is called the entropy fundamental
function of X. Sy is assumed to be continuously
differentiable and positive homogeneous of degree
one.

A. Rieckers + Composite System Approach to Thermodynamic Stability

(ITL.2) If
(2,Zy = (21, 22), (Z1, Z2))
then
Sz(Z) = 85,(Z1) + Sx,(Zs) . (2.13)

(ITL.3) Let Z,Z' € €5 have the same values for
all total observables different from energies and
work coordinates. Then

8:(2) £8:(Z') = 2, Z) QX 2"y . (2.14)

In spite of this scheme of assumptions (I)— (111)
being not yet completed it is elucidating to inquire
already at this stage about the traditional laws of
thermodynamics. The first law is incorporated in
the assumptions (I) on the state variables: One
may deduce from (I) that there exists a total
energy observable for every system which depends
on the states alone and that this energy may be
varied in a form different from work for every
proper thermodynamic system. As for the second
law, one thinks of (2.10) as its adequate expression,
since it tells us that the entropy always increases
for an adiabatic transition. However, this is only
justified by the inclusion of a lot of other assump-
tions. So it is above all essential that the <J-relation
is non-trivial in the sense that there are pairs of
system-states which are in <J-relation only in the
one direction and not in the other, a fact which
follows from the domain assumption for 1. Secondly
it is of course important that the quantity which
increases during an adiabatic state variation, is an
extensive observable, depending on the states
alone. Since these supplements have also to be
added to the usual formulation of the second law,
we shall in fact identify it with the order homo-
morphy (2.10).

The zeroth law would follow from the maximum
principle of entropy, which would at the same
time provide the introduction of the intensive
contact observables; but this principle is not yet
incorporated into the formalism and requires
extra assumptions which will be discussed in the
next section. So one has a clear distinction between
order homomorphy and the maximum principle of
entropy.

3. Operational Formulation of Stability

In this section we shall lay emphasize on those
stability statements which are connected with the
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thermodynamic operations. So let us consider a
relaxation relation of the form

2,2y R, Z) (3.1)

described in Assumption (II.2). According to (II.2)
there is only specified a connection between Z’ and
Z but not between X’ and X. And this cannot, in
fact, be done generally, because a relaxation of a
constraint may initiate a radical change of the
constitution of the physical system. What we have
in mind is not the trivial change connected with the
decrease of the number of state variables. Beside
that there may occur changes in the systemic
constitution which cannot be restored by the
imposture of a reversible constraint. The relaxation
of an inhibition may trigger very powerful physical
processes. In the mildest form there may happen
phase transitions in the usual sense or material
mixing processes. But there may also take place
particle reactions of increasing energy transfer, that
is chemical, nuclear and elementary particle
processes which may lead to new features of the
involved systems, which could not be made out in
the inhibited constitution. To understand this right
one should remember that a frequent form of an
inhibitionis the spacial separation of the subsystems.
One may advocate a less restrictive concept of a
thermodynamic system than we use here (here one
system has one entropy fundamental function with
a fixed set of state variables), it remains nevertheless
a special property of a relaxation (3.1), if there
exists a simple connection between the initial and
the final systems.

3.1. Definition. A relaxation of the form (3.1) is
called stable, if there is a Zy' € €5, with

2,2y I, Z¢") . (3.2)

For a stable relaxation there is thus the possibility
of regaining system-states of the initial system by
the mere imposture of a reversible inhibition. This
should be viewed as a pecularity of both systems
participating in the relaxation. The definition
implies that one stable relaxation leads in general
to a whole variety of stable relaxations with the
same final system-state. So are with (3.1) all
relaxations of the form

(X', Z*y R{X,Z)

stable, since (3.2) is not affected by those operations
which lead to (X, Z).

Composite System Approach to Thermodynamic Stability
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We have now worked out in an operational
manner two concepts, namely order homomorphy
and stability of a relaxation, which in combination
lead to an explication of Gibbs’ maximum principle
of entropy with purely thermostatic notions.

3.2. Theorem (Maximum principle of entropy).
For given (X, Z) € P and X' € # define a subset
D5/ (Z) c €5 by the relation

D (Z)2Z' < (X', Z'> R(Z,Z> (3.3)

and assume all these relaxations to be stable. Then
it holds

Ss(Z) =max Sy (Z'), Z'€Ds(Z). (3.4)
Proof. Because of stability of the relaxations (3.3)

there is a Zy' € €5 with

2T Zy'>y. (3.5)
Since I c R-1 it follows

Zy €Dy (Z). (3.6)
Order homomorphy leads from (3.3) to

Sy(Z') = 8:(2) 3.7)
and from (3.5) to

85(2) = 8 (Z0). (3.8)

Combination of (3.6), (3.7) and (3.8) gives (3.4). []

Why may we consider Theorem 3.2 as a reformu-
lation of Gibbs’ maximum principle of entropy as
cited in the introduction ? That our reformulation
as a theorem has another logical status than a
principle does not affect its content but only its
connection to other parts of the theoretical for-
malism. We found it indeed very elucidating to
divide the maximum principle into the two
mentioned parts. As for the content one sees that
in contradistinction to Gibbs’ statement the domain
of variation in (3.4) is clearly specified and consists
of usuai equilibrium states. But it is a domain of a
thermodynamic system different from the original
one, a fact which hardly can be avoided in the realm
of equilibrium thermodynamics. If one accepts this
method of varying states then one could, of course,
proceed to more complex partitioned systems with
still more internal variables to vary. The reason to
choose the special form (3.4) is simply that all more
complicated variation methods can be reduced
(locally but not globally) to the given one. This is
in principle — but not in all details — a well
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known manner of stating the maximum principle
of entropy in a definitive language. Our approach
has beside that revealed the following points:

(1) The existence of a nontrivial domain of
variation in the entropy maximum principle is the
consequence of a special connection between some
system-states of the two systems involved: they
are connected by means of stable relaxations.

(2) The entropy maximum principle does not
cover the full content of the second law, since the
latter implies, e.g., order homomorphy (= increase
of entropy) also in the case of unstable relaxations.

Let us now turn to the notion of thermodynamic
stability which is usually formulated by means of a
given entropy fundamental function and should
also in our operative language refer to one and the
same system. For this we replace X’ by (X, ) in
Def. 3.1 and consider a connection between the
system-states in form of a product of relaxations:

A&, 2), (21, Z9)) R (2, 2y + Zoy - (3.9)

Relation (3.9) expresses again a special property of
all system-states showing up there, and this even
more if all relaxations involved are stable. If we
shift emphasis to the right hand side we arrive at
the following definition:

3.3. Definition. For given (X, Z) e P let D(Z)c € s

denote a set of state tuples with

ZWeD(Z) = Z—Z1€2(Z), (3.10a)
and

{2',2' =12Z,2€(0,1)}c2(Z). (3.10b)
We call (X, Z) stable over Z(Z) if there is a
710 € & (Z) so that

(2, 2),(Z1,Z — Z1)y R (X, Z) (3.11a)
and

2,2y I" (2, 2),(Z1°, Z — Z1°)>

is valid for all Z; € Z(Z).

Observe that we did not assume that the value
719 of the equilibrium decomposition is unique. Let
be in fact Z1*:= 1Z, 2€(0,1). Then Z1* € Z(Z)
and

(3.11D)

(2, 2),(Z1*,Z — Z1*)) R" {2, Z) . ()

On the other hand, homogeneity of Sy and (3.11b)
imply
Ss(Z1*) + Ss(Z — Zy*)
= 85(Z1%) + Sx(Z — Z,9).

A. Rieckers -
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In virtue of the assumption (I11.3) we have then
A2, 2)5(Za*,Z — Zn*))

~ (2 2)5 (2102 — 200)) ~ (2, Z) . (%)

By means of a lemma of [8] one concludes from (%)
and (%) that

2,2y In{(Z, 2),(Zn*, Z — Zn¥)) .

Thus all homogeneous partitions of (X, Z) are
achieved by means of reversible inhibitions.

Definition 3.3 contains two different aspects of
stability, both of which are tested by splitting
(X, Z) into a composite system. The one we have
stressed here is that of constitutional stability
which prevents a radical systemic transformation
after relaxations of constraints. The other more
usual one concerns this approach to equilibrium
which is given by the combination of (3.11a) and
(3.11b): A “disturbed state” (X, X),(Z1,Z — Z1))
tends back to the stable “configuration”

(2, 2),(Z1°, Z — Z19))

in a certain region of disturbances Z (Z). The size
of Z(Z) is in both regards a measure for the degree
of stability.

3.4. Definition. (X, Z) is called globally stable if
it is stable over

DTy = (2 —%5), (3.12)

and locally stable if it is stable over the intersection
of some n-dimensionally open decomposition region
9(Z) with Z3(Z).

Before stipulating the kind of stability which is
generally to be expected for thermodynamic
systems we discuss some consequences of local (and
not global) stability.

3.5. Proposition. Let (X,Z) be locally stable
over Z(Z), and define

D' (2):=Zs(Z)\Z(Z) =0. (3.13)

Then there exists for every Z1* € 2'(Z) a thermo-
dynamic system X, such that

(i) (&, 2), (41> Z — Z1*)) Rh Xy, Z) (3.14)
and
(i) Ssg(Z)<8s,(2). (3.15)

Proof. (i) The existence of a system X, can, of
course, be deduced only from existence assumptions
put into the formalism previously, which here is
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done via the domain assumptions for R. Z,* € 2'(Z)
makes (3.11) invalid. (3.11b) being independent of
the value of Z; one has to modify (3.11a). By
assumption is Z1* € €y and can thus be assumed
of 2. Since (Z1%, Z — Z1*) has at least n pairs of
components of the same kind one sees that

<(2’ 2): (Zla: Z— Zla)>
is in the domain of R" and must have a partner

(X, Zy. The only way to break (3.11a) is then
ZaF2.

(ii) Assume now
8x(Z1%) + 8x(Z — Z1*) = 8x(2), (3.16)
for Z1* € 2'(Z). Because of local stability there is a
Z10 € 2 (Z) with
Sx(Z:*) + 8z(Z — Z,%)

=8:(%1°) + 8:(Z — 2,°) . (3.17)
By Assumption (II1.3) we have then
(&, 2),(Z1*, Z — Zh®))
L&, 2),(2:%,Z2 — Z,0))  (3.18)
and by (3.11Db)
(2, 2),(2:°,2 — %)) ~<Z2,Z) (3.19)
which together gives
Pr:= (X, 2), (1% Z — Zn%))
Q2 Zy=:P. (3.20)
The explicit meaning of (3.20) is
(P, Po, Q) II(R, I)(P, Py, Q) (3.21)

for some Pyoe P, a pair Q',Q € Pxy, and some
product I1 (R, I). Since evidently all total observ-
ables are conserved in (3.20), no work can be
exchanged between (X, 2Y) and Xw and we have
Q' = Q. A careful analysis of the combinatorical rules
for R and I — outside the scope of this presenta-
tion — shows, that

P« R P

can be derived from (3.21). This would, however,
contradict our assumption Z1* € 2'(Z). Thus (3.16)
must be replaced by its negation

8:(Z) < 85(Z1%) + 8z(Z — Z1%) . (3.22)

Combination of (3.22) with (3.14) and order homo-
morphy lead to (3.15). [

In general there cannot be said anything about
the relationship between the 2y and X' and between
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the X, amongst each other. This generality is
obviously to wide for a definite theory. On the
other hand the restriction of the thermodynamic
formalism to globally stable states only would
exclude, e.g., the fruitful treatment of meta-
stability by equilibrium thermodynamics. We,
therefore, choose the middle road by making the
following assumption.

(IV) Local stability

Every <X, Z) € 2 is locally stable in the sense of
Definition 3.4.

Let us indicate some immediate consequences of
(IV). First, X, of (3.14) has to be locally independent
of Z1*, which leads to an agreeable structure for the
formation of new thermodynamic systems. Second,
we may deduce that every (X, Z) is the outcome
of a family of stable relaxations. Remembering the
definition of a product of relations, (3.11a) and
(3.11Db) are equivalent with

(&, 2),(Z1,2Z — Zn))

- Rn-1(3". 7" R(Z, 2> (3.23)
and
(X, Zy 1Y, Zo')
- INLYZ, X), (2192 — Z1%)> (3.24)

respectively. So, for all (X', Z") which may appear
in (3.23) if Z; varies in the n-dimensionally open
region Z(Z), the last step in (3.23) constitutes a
stable relaxation. Applying the maximum principle
of entropy to this set of relaxations, one obtains
from the necessary conditions a characterization of
the internal equilibrium by the equality of a pair
of intensive parameters. This being mentioned to
underline the importance of local stability.

Let us conclude our operative discussion of
stability by the symbolic description of what
happens in a spontaneous transition from the
locally stable system-state (X, Z) to the more
disordered configuration <(Xy,Z) predicted in
Proposition 3.5. Since the state variables have the
same values in both system-states, the increase in
disorder cannot be due to a work contact or to
direct internal relaxations of constraints. The chain
of configurations the closed system has to go through
may be written as

Z,Z)(BHn(Z, 2), (&', Z — Z1'))

-Rn{(Z,, 2> (3.25)
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where Zy' € Z'(Z), the domain with greater density
differences between the subsystems (cf. (3.13)). The
crucial step is the first relation in (3.25), considered
as a spontaneous decomposition of <X, Z) into
subsystems with unequal densities. (Usually the
R-1.relation is interpreted as the effect of external
manipulations.) In a quasi-static realization of this
decomposition, the state tuple of the first sub-
system had to vary from the equilibrium value Z;0
through neighbouring values Z; to the more
distant Z;’. The transition Z:9 — Z; is connected
with a decrease of entropy, whereas Z; —Z;" is
accompanied by an increase of entropy. The first
step is prevented by the second law and the second
step by a gap in the state space, as is shown in
Section 5. Thus the first part of (3.25) can only be
accomplished, if at all, in one single non-equilibrium
transition, and this in general not for the whole
system but in subsequent processes for small parts
of the system. That is, we have to rescale (3.25) to a
lower size. A more refined discussion of such
phenomena requires of course analytical methods.

4. Analytical Formulation of Stability

We investigate now the consequences of local
stability for the entropy fundamental function and
stress the topological properties of a suitable
decomposition region & (Z) which will always be
assumed to contain all Z;=1Z, 1€ (0, 1), and to
satisfy

71€D(Z) = Z — 21D (Z). (4.1)

4.1. Definition. An entropy fundamental function

Sy is said to satisfy stability at Z over Z(Z) c €, if

Sx(Z) = max [Sx(Z1) + S=(Z —Z1)]. (4.2)
Z1€9(2)

In virtue of Assumption (IV) for every (X, Z) € 2
there must exist an appropriate n-dimensional
D (Z) c €y, so that (4.2) is valid. This is an easy
consequence of order homomorphy. On the other
hand does (4.2) not imply (3.11) without Assump-
tion (IV). For, if Z,9€ 2 (Z) is the maximizing
decomposition coordinate tuple, then

Sg(Z) = 82(21°) + 8£(Z — Z,°) (4.3)

does strictly speaking not imply the operational
relation

Z,Z) I{(Z, 2),(2:°, Z — Z1")) (4.4)

by means of (I)—(III) alone. It is, however, inter-
esting that
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Sx(Z1) 4 S:(Z — Zy)

< 8:(Z1°) + Sx(Z — Z,%), VZ1€2(Z) (4.5)

gives because of (III.3)
(&, 2),(Z1,Z — Zn))

<LK(Z, 2), (210, Z — Z,9)) . (4.6)
And this would lead to

if (4.4). would be available. So, only with Assump-
tion (IV), which provides (4.4), Eq. (4.2) is equiv-
alent with (3.11).

We consider here (4.2), however, as a purely
analytical property of the function Sy and admit
also decomposition regions Z(Z) of smaller dimen-
sionality m than the dimension n of €. Because of
homogeneity stability of Sy at Z over 2 (Z) induces
stability at AZ over 1Z(Z) for all 1>0. This
redundancy and a certain clumsiness of (4.2) may
be avoided by using density variables. In order to
pass freely from extensive state variables to density
coordinates and vice versa, some geometrical
properties must be shown of Z (Z). We elaborate this
point carefully, because some analytical statements
in the density picture lead only to physical state-
ments if they can be retranslated into the language
of extensive variables.

Homogeneity is the reason that every positive
state variable can be used as ‘“‘size variable” which
characterizes the largeness of the system. (One may
thus, e.g., use the energy of a subsystem as size
observable for the composite system.) We assume
w.r.i.g. that Z» is the size variable and define for
Z c €5 the (n—1)-tuple of density coordinates by

zi=(ZYZ", ..., Z"n"1|Zm) (4.8)
We write also

Z=12Zn"(z1). (4.9)
Introducing for all 2 € R the hyperplanes

Hrn = {Z,zeRn1,Zn = 1}, (4.10)
we define the crossections of Z(Z) as

DiZ) =D (Z)NKn

=:(2,,1), AeR, (4.11)

where by definition

2;:= {z;2e R"1, A(2,1) e 24(Z)} . (4.12)

We assume throughout the paper that Z(Z) is
not contained in . If then Z(Z) is an m-dimen-
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sionally open set, then 2; is (m — 1)-dimensionally
open, the empty set being so by definition. Relation
(4.1) is valid, iff

A
Zn — }
=:i22€ Q(zn—;,)

21€2) < 2+ (z —=1)

(4.13)

for all 1 € (0, Z"). Whenever convenient we replace
A by

®:= AZ". (4.14)
The specific entropy is given by
sx(2):=Sz(4)]Z" = Sx(z,1). (4.15)

4.2. Proposition. Sy is stable at Z over 2 (Z), iff
s5(z) = max [xss(:1) + (1 — #) s5(22)] (4.16)

21€ 2%

for all x e (0, 1], where 2, = 2(,z») is given by
(4.12), and where

%
29 =2+ T=n (2 —21) =:22(%,21) . (4.17)
—x
Proof. Since
22)=\J 2:2). (4.18)
2€(0, Zm)
Equation (4.2) is equivalent to
Sz(Z) = max [Sx(Z1) + Sz(Z — Z1)]
Z1€Z;(Z), VYAie(0,Zn)2]. (4.19)

Dividing (4.19) by Z» gives (4.16). []

Since (4.16) is not changed if we replace Z and
2(Z) by BZ and [Z(Z), >0, the dilation de-
generacy is removed. On the other hand a whole
family of regions is now involved instead of a single
one. A simplification is only possible for special
decomposition regions.

4.3. Definition. A decomposition region & (Z) will
be called simple, if it has the form

DZ)=FN(Z—¥%), (4.20)

where € is an m-dimensionally open cone with a
bounded cross section circled around z, i.e.

€={2;Z=02Az,1),1>0,2€2(z)} (421)

and the (m — 1)-dimensionally open region 2 (z)
satisfies
2e€2(z) = 2 +e(z—2)e2(z) (4.22)

for all e€[0, 1].
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In this case the regions 2, in (4.16) can be
obtained from 2 (z).

4.4. Lemma. Let be & (Z) a simpel decomposition
region with 2(z) as in (4.21) and 2,, » € (0, 1], its
cross sections according to (4.12). Then the follow-
ing relations are valid.

(i) For x € (0, 3] holds
2, ={21;21€ 2(2) and z2(%,21) € 2(2)} (4.23)
(cf. (4.17)).
(ii) For » << x’ holds

2, Cc2,. (4.24)
(iii) Jxo € (0, 3] with 0 << % = %o implies
2, = 2(z)
and » < % < } implies

9y F 2(2).

(4.25)

21€2(2) => 20=22—21€2(2). (4.26)
V) 2(Z) N A = A(2(2), 1)
for all 0 << A < 9 Z7.
Proof. (1) Z1€ Z;(Z) for A€ (0,Z7|2], iff
Z1"= A and Z,€¥ and Z —Z,€¥¢ . (4.28)

(4.27)

The first two properties in (4.28) lead to Z; = A (21, 1),
21 € 2(z), the last one gives

Zo =7 —7Z1 = (Z" — )) (22, 1)
where

ze = 22(%, 21)

—24 xy(z—zl)eﬂ(z). (4.29)

iy ==

Since the argumentation can easily be reversed,
21, 22(%, 21) € 2(2) is necessary and sufficient for
21 € 2, (where again A = xZn).

(ii) Because 2(z) is circled around z Eq. (4.29)
implies

20(%',21)€2(2) forall 0<x <x. (4.30)
This proves (4.24).
(iii) Define for all z; in the closure 2(z) of 2(z)

%0(21) :=sup {x; % €(0,3],22(%,21) € 2(2)} .
(4.31)
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#9(21) >0 for all z3 € 2(z) since 2(2) is (m—1)-
dimensionally open, and decrease of x diminishes
the Euclidean distance |z—zs|, so that z» enters
finally 2 (z) for » > 0.

Define furthermore

%o :=infxg(21), 21€2(2) (4.32)

which is greater zero, 2(z) being compact. We
observe that the infimum in (4.32) is not assumed
in 2(z) since for a given z; € 2(z) there is always
an z;’ on the line determined by z and z; for which

%0(z1") < x%0(21)

is valid. Therefore » <z, implies

x<xo(z1) forall ze2(z)
which gives
22 (7{, 21) e2 (2), Vz1€2 (),

what in turn is equivalent to 2, = 2(z).

If on the other hand x>y, then there is a
z1 € 2(z) with x(z1)<<x and za(x, z1) ¢ 2(z). Thus
2((2)\ 2. £ 0.

(iv) 20 =% <= 21/2(2) = 2(2) < forall z1 € 2(2)
is 29(3,21) =22 — 21 € 2(2).

(v) In virtue of (4.11), (4.14), and (4.24) the
validity of (4.27) is immediate. []

We see from the Lemma that for simple decom-
position regions the domains of variation in the
density picture, the sets 2,, xe (0, ], are obtain-
able from the single set 2(z) by (4.23). If 2(2) is
invariant under reflections at z, then all 2, coincide
with it. But reflection symmetry is too narrow an
assumption to be suitable for all applications. So,
instead of setting up further requirements on the
variation domains we shall look for alternative
forms of the stability condition itself.

Let us introduce the vector p (z) with components

pi(z):=0sx(2)/0zf, 1<1<n—1, (4.33)
and the subtracted entropy density
§¥(2520) 1= 55(2) — P (20) - 2. (4.34)

4.5. Theorem. Sy is stable at Zy over the simple
decomposition region Z(Zy) (with cross section
2 (20)), iff

s%(20520) = max s¥(z;2) .
z€ 2(20)

Proof. («) We assume stability and use (4.16).

For arbitrary z; € 2(z) there is a » (0, 1] with

(4.35)
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z1 € 2, for all 0<x' <. This results from (4.25)
and (4.24). Then, dropping for a while the index X,
we get from (4.16)

s(z0) = %' s(z1) + (1 — ') s(22) (4.36)
where
z2 =20+ 1 . (20 —21) = 22(#', 21) .
— X
Thus
s(zo) — s(ar) = [s(e2) — s(e0)]  (437)

for all %’ € (0, %]. Performing %' — 0 we obtain

8(20) — 8(21) = (z0 — 21) * P (20) (4.38)

which is equivalent with (4.35).

We start from (4.35). For every x € (0, 1] holds
for all z; € 2,(z9) that za(x, z1) € 2(z9). Thus for
all z1 € 2,(z0) (4.35) leads to

8(20) — s(21) = (20 — 21) * P (20) (4.39)
and to
(22 — 20) * p(20) = s(22) — s(20) - (4.40)
Since
%
22 —20 = —— (20 — 21)

1 —ux
(4.39) and (4.40) give

1—x

s(z0) — s(21) = —— (s(22) — s(20))

t

which easily leads to (4.16). []
The geometrical meaning of (4.35) is best under-
stood in the form

sx(2) = sx(z0) + (2 — 20) * P (20) »

Vze 2 (z). (4.41)

The r.h.s. is the tangent hyperplane on the entropy
surface through (29, sx(z0)) and all entropy values
for z € 2(z0) have to lie below this hyperplane.

Multiplication by Zy® transforms (4.35) back
into the space of extensive variables.

4.6. Proposition. Sy 1is stable at Zg over the simple
domain Z(Z,) with crossection 2 (zg), iff

n—1
Sx(Zo) — 2 pi(Zo) Zo?
=1

n—1
= max |Sz(Z) aZpi(Zo)Zf

Ze¥(Zo) t=1

(4.42)
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where

Y (Zo) 1= Zo" (2 (20), 1) . (4.43)

One should observe that beside the specification
of domain properties our reasoning gives the exact
equivalence of (4.42) with (4.2). This could not
have been achieved treating (4.2) by means of the
Lagrange multiplier method.

Also in (4.42) are the domain properties some-
what peculiar. ¥7(Zp) is an (m — 1)-dimensional
region if & (Z,) has the dimension m. If m =n, one
extensive variable is to be kept constant. But this
must not necessarily be the total energy. Neither
are there specific order-relations among the states
in ¥7(Zy). Both facts indicate that (4.42) cannot be
the physically meaningful explication of the
fundamental Gibbs principle in spite of being
mathematically equivalent to it in some cases.

5. Metastability and Phase Coexistence

By further development of the analytical methods
we refine our discussion about what may happen to
a system in a special kind of locally stable state.
We proceed first in the density picture. In virtue of
Theorem 4.5 it is reasonable to define the various
notions of stability directly for the specific entropy
sg. The physical domain of sy is the crossection 25
of €5, i.e.

Er=J (25, 1).
220
95 is an (n — 1)-dimensional set. Often the mathe-
matical domain of sy is larger than 2.

5.1. Definition. (i) sy is stable at zg over the region

%(ZO), Rn-15 %(Z()) 320, if

5% (205 20) = max s¥(z;20) .
z€U(z0)

(5.1)

(ii) sy is locally stable at zg, if there is an (n — 1)-
dimensional, circled region 2(z¢)3zp, so that
(56.1) is valid with 2(z) replacing % (2o).

(iil) sy is stable in a region 7, if it is locally stable
at allze %.

According to Assumption (IV) ss has to be stable
in the physical domain 25.

5.2. Definition. (i) For z1, z2 € R7~1 define the line
segment

lz1,20]:={z;2 =21+ €(22 — 21), €€[0,1]}. (5.2)

Composite System Approach to Thermodynamic Stability
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(il) % c R71 is called convex, if 21, z2 € Z im-
plies I[z1, 2] Cc %.

We see that a region % is convex, iff it is circled
around all its elements.

5.3. Proposition. (i) Let be sy locally stable at zg
and assume there is a z; with
(5.3)

Then [z1, z9] contains points in which sy is not
locally stable or not defined.

% (21; 20) > 5% (203 20) -

(ii) sy is stable in the convex region %, iff for all
20 € % sy is stable at zg over % (cf. (5.1)).
(iii) sy is stable in the convex region %, iff for all
20,2EU
(0 —2) " p(20) = (20 — 2) " p(2) - (5.4)
Proof. (i) Assume sy to be defined in 1 [z1, z¢] and
select therein that point z’, in whichs%(z; 2¢) is
locally minimal, and which has the greatest dis-
tance to zg. Such a 2z’ must exist since s¥(z; z¢) is
locally maximal at zp and nevertheless increases

to a value larger than this maximum (cf. (5.3)).
Define

z(€) 1= 20 + €(21 — 20)
and set 2’ =z(¢&’). Then (dropping the index X))
s* (a(e): 20)

de e—g

= ()

= (21— 20) - p(¥) — (1 — 20) " P(20) . (5.5)

For every ¢ (&', 1) we have

§*(2(e); z0) > s*(2'; 20) (5.6)
or equivalently

s(z(e)) — s(z') > (2(e) — 2) - p(20) - (5.7)
Because of

z(e) —2 = (¢ — &') (21 — 20)
(5.5) leads to

(z(e) —2')*p(20) = (2(e) = 2') - p(z')  (5.8)
which modifies (5.7) so that

s*(z(e);2") > s*(2;2)) (5.9)

emerges, for all ¢ € (¢', 1). But (5.9) contradicts local
stability of z'.

(ii) Assume there is a zg € %, so that sy is not
stable at zy over %. Then there exists a z; € %, so
that (5.3) holds true. Since sy is locally stable at zg
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we can apply (i). Then on the one hand [z, 2]
contains points in which sy is not locally stable, on
the other hand, because of convexity I[z1, z0] Cc .
This contradiction is only avoided if sy is stable
at zg over % for every zpe %.

(iti) Let be zg, z € %, then (ii) gives

s(20) — 20 P (20) = 5(2) — 2+ p(20)

and
8(z) —z-p(2) = s(20) — 20" P(2) .
Thus
(20 — 2) " p(20) = s(20) — 5(2)
=(20—2)p(?)

leading to (5.4).
Let reversely (5.4) be valid for all zp,z€ %.
According to the mean value theorem one has

8(z0) — s(2) = (20 — 2) " p(%')
for a
2 =z0+ & (2 — zp), €(0,1).
Now (5.4) holds also for the pair zg, 2" € %, i.e.
(z0 —2) " p(20) = (20 — ) " p(2))
which after multiplication by 1/¢" leads to
(z0 —2) - p(¥)
— s(z0) — 8(2) -

(zo —2) p(20) =

This gives local stability for all zg € #. [
We immediately draw an important conclusion.

5.4. Proposition. Let be sy locally stable at every
z€ % c R7»=1 but not at all z € Z be stable over %.
Then % is not convex.

Proof. If % would be convex, then local stability
would in virtue of Prop.5.3(ii) lead to stability
over % at all ze %. []

Thus, if a thermodynamic system has locally but
not globally stable states then 2y as well as €y
cannot be convex. Let us mention in this connection
that the topology of the physical state space of X' is
made still more complicated by the third law:
hypersurfaces with absolute temperature 0 (and oo)
are to be excluded from 2 and corresponding cones
from €5 (cf. [10]).

We resume here the discussion of the changes a
system may undergo in the neighbourhood of a
locally stable system-state (X, Z) and remember
that in general the more disordered constitution of
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that material system, here denoted by <(X',Z),
stands in no simple relationship to the original one.
There are, however, important cases where X’ may
again be expressed by configurations of 2.

5.5. Definition. A system-state (X, Z) which is
only locally stable (over the decomposition region
2(Z)), is called metastable, if there exists an
n-dimensionally open decomposition region 2 (Z)
with

2(2) < 9(Z)cZ(Z) (5.10)
and a Z1*,

Zi* e D' (Z):= D(Z)\2(Z) (5.11)
such that

(Z,2),(Z,Z2 — ZY')) Rn (2", Z) (5.12)

o In{(Z, Z), (Za*Z — Zn¥)y, VZy' €D (Z)

is valid.

In our definition of metastability we have
included properties of the surrounding region of
state space which are usually assumed implicitly
but not stated explicitly. They say that also in the
more distant part Z’'(Z) of the decomposition region
the relaxed composite system approaches a system
state (X', Z) which is order equivalent with a
composite system-state of the previous type. The
implications of this relatively simple property shall
support the adequacy of our definition.

For simplicity let us assume, that there are cones

= U 4(2(), 1)
R A>0

%:=UJ 2261

A>0

(5.13)

with 2(z) and ,@(z) (n —1)-dimensionally open, so
that
7(2) =
(%)=

‘gﬁ( (6) and

ENZ—%). (5.14)

Observe that the cross sections are, however, not
assumed to be circled around z. The restricted
crossections 2, ¢ 2(z) etc. are defined as in (4.23).

5.6. Proposition. Let be (X, Zy)» metastable accord-
ing to Definition 5.5. Then the following relations,
formulated with the denotations of Def. 5.5, are
valid.

@) Ss(Zo) < Sy (Zo)

= maXx S(_\:’ x) (Z]_,,Z()——Zl,)
Z{EQ(ZQ)

(5.15)
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(i)  sx(z0) < #*sz(21*) + (1 — %*) sp(22%)
=% 8x(21") + (1 — %) s5(22)
Vx' €(0,34] and Vz1'e€ 2, (z0)

(5.16)

where x* := Z1*7|Zy" € (0, 1] (choose the indices of
the subsystems accordingly) and where

’

%

2o’ =29’ (#',21") = 20+ (z0 — z1').

11—

(ili) p(z1*) = p(22¥), (5.17)

whereas z1¥%, 29, 22* are pairwise distinct.

(iv) s¥(21*;21%) = sE(22*; 22%) . (5.18)
(v) For (at least) one z;*, i =1, 2, one has
8¥(2i%; 20) > 6% (205 20) - (5.19)

(vi) 24+ is not circled around zy (and thus not
convex).

Proof. (i) (5.15) follows from (3.15) and by order
homomorphy from (5.12) combined with local
stability of <X, Zy).

(ii) Divide (5.15) by Zo» and set »x' =Z,'"|Zy".

(i) Apply (5.16) with »" =3x* fixed and z;" vary-
ing in an (n — 1)-dimensional neighbourhood of zg

contained in 2,+. The necessary condition for the
maximum at z;* leads to

() + (L= pea®) (= ) =0
p 1 p 2 1_%* - ]

which gives (5.17).

Since Z;* eé(Zo)\Q(Zo), it cannot be of the
form Z1* = 1Zgy, for a 1 € R. Thus z1* &=2¢. Since
#* > 0 one obtains pairwise inequality of 21 *, z¢, z2*.

(iv) Set in (5.16) z1"=21* and vary x’ near x*.
Because Z(Z) being open z1* € 2, for |x* —3’|
small enough. The necessary extremal condition at
' =ux*is

d
T ¢ 8@*) + (1 =) 822 (', 21%))]wmnr = 0,

which gives

20 — 21*
0= s(ar¥) — 8(:2%) +P(2¥) oy
and via (5.17) and the definition of zs* leads to
(5.18).
(v) Assume

8% (203 20) = s* (2% 20)
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be valid for ¢ = 1, 2. Then follows
#¥ s* (21%; 20) + (1 — 2*) s*(22%; 20)
= s*(20; 20)

which is equivalent with
#*s(21%) + (1 — »*) s(22%) = s(20)
and contradicts the first part of (5.16).

(vi) From (5.18) and Prop. 5.3(i) follows that
1[zi*, z0] contains not locally stable points and is,
therefore, not contained in 2,3 z;*,29. [

Because of Prop. 5.6(vi) there are in I(z;¥*, zo]
points which cannot be taken on as states from X.
Consider, however, the composite system

<(2y Z); (“lzl*y 0C2Z2*)>

with o; > 0, 2 = 1, 2. Since
p(e1Z1*) = p(Z1*) = p(Z2*)

= p(x2Z2%) (5.20)

and since the R und I relations should be invariant
against positive dilatations we may deduce from
(5.12) that

U2, ), (01 Z1*, a2 Z2*)) R

o In{(X, X), (m1Z1*, a2 Z2*))  (5.21)

is valid for o; >0, : =1, 2. Let us denote
C* = {Z',Z' = o1 Zr1* + asZ*, a1, 02 > 0}. (5.22)

5.7. Definition. For Z' € €* we define (X', Z") by
the relation

U, L), (2™, a0 Zo™)y (I7Y)n (2", Z7)  (5.23)

the existence of the right hand side partner follow-
ing from (5.21). (The uniqueness of the partner
should be an intrinsic property of a well formalized
R-relation.)

By definition X" is a phase coexistence system. Its
domain of states covers regions where X' also exists
and others where X' cannot assume states. So X’
exists, e.g., for all points in £[Z1*, Zo*] c €*. From
(5.23) follows immediately that

S8z (Z') = a1 8£(Z1%) + a2 Sz(Z2%),
VZ' e €*. (5.24)

5.8. Proposition. (1) Let be (X', Z") defined in €*
according to Def. 5.7, and let be again Z; =

Zh*+Zs*. Then (X', Zy) is neutrally stable over
the region

D*(Zo) := €* N\ (Zo — €*) (5.25)
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ie.,

Sx(Zo) = Sx(Z1') + Sz (Zo — Z1') (5.26
for all Z,' e Z*(Zy).

(i) For all 2’ of the form

2 =u"m* 4+ (1 —3')z2*, 2'€[0,1] (5.27)
holds

ssr(2') = %" sp(21%) + (1 — %) sp(22%) . (5.28)
(iii) % (2';20) = % (205 20) (5.29)

for all 2’ € £[z1*, z2*].
Proof. (1) Zi' € D*(Zo) < Z1' =o1Z1* +a2Zo*
with o; € [0, 1], =1, 2. Then
Zo—7Z1 = (1 — o) Z1* + (1 — ag) Zo*,
and we find in virtue of (5.24)
Sz (Z1') 4 Sz (Zo — Z1') = Sx(Z1*) + Sx(Z2*)
= Sy (Zo) (5.30)
for all Zy' € Z*(Zy).
(i) Multiply (5.27) by Z’" > 0. Then
Z' =7z 1) = Z1* + asZo*€C*
and the entropy of (X", Z") is given by (5.24).

Dividing the latter expression by Z'" leads imme-
diately to (5.28).

(iii) Differentiation of (5.28) with respect to '
gives
(:1* — 22%) " p (') = sz(21%) — s2(22%). (5.31)
Using (5.17) and (5.18) we obtain
(1% — 22%) - p(21%) = sx(21™) — sx(22%)
= (z21* — 22%) - p(2'). (5.32)
Leaving 2’ fixed we introduce
%

2 (%) =2 + r— (' — 21%)

(5.33)

for variable x € (0, x']. sy (2" (x)) satisfies then an
analoguous equation as (5.28) (with »" being replaced
by (%' — #)/(1 — »)). With this we find

sy (2) = %85 (21%) + (1 — %) 557 (2" (). (5.34)
Differentiating to » at =0 changes (5.34) into

0=sz(a1*) —sx(2') + (2" —21%) " p(2') (5.35)
where 2z’ is an arbitrary point of /[z1¥, z2*]. Since
20 € /[z1%, 29], Equation (5.32) and (5.35) are valid
for 2’ =z, too. Subtracting the two Egs. (5.35) for

A. Rieckers -

Composite System Approach to Thermodynamic Stability

2" and z9 and using (5.32) we arrive at
sx(20) — 8x(2) + (2" — 20) " p(20) = 0,

which proves (5.29). [

We see from the foregoing results, that for a
metastable system-state (X, Z;> there exists the
possibility of a phase-coexistence constitution of
the same material body in which the state regions
not accessible in the X-constitution may now be
assumed. In this phase-coexistence constitution X"
the entropy fundamental function Sy is neutrally
stable at Zy over the two dimensional double cone
9*(Zy) and the specific entropy sy is neutrally
stable at zo over /[z1%*, z2*], all assertions being
consequences of metastability. The specification of
how many phases coexist in (X", Zy) requires the
study of further topological properties in the state
space by the continuous vairation of Zj itself. This
and related questions will be treated in a separate
investigation.

6. Conclusions

Let us summarize what kind of system concept
did emerge from our assumptions and derived
results in the foregoing considerations. We have
incorporated into the formalized theory that every
thermodynamic system X has a fixed set of state
variables describing all states which may be taken on
and a single valued entropy fundamental function
Sy; this being the restrictive part of our approach.
On the other hand we have incorporated the
possibility to form new systems from given ones by
composition of subsystems and by the imposture
and relaxation of constraints; and we have only
assumed stability to be valid over a local neighbour-
hood. These two features express the flexible part
of the approach.

Consider now a system state (X, Z) which in fact
is only locally stable in a decomposition region
2(Z) ¢ Zs(Z) where Z5(Z) denotes as before the
maximal set of states a subsystem may assume. We
were then able to show, that there must exist a new
constitution (Xy,Z)> with Sy (Z)>Sz(Z) of the
same material system, since the interior constraints
of the composite system

X, 221, Z — Zy'))
Z)' € 9'(Z) := D5 (Z)\2(Z)

can be relaxed and the outcome is again a thermo-
dynamic system in a locally stable state. Here o
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indexes subregions 9, (Z) c 2’ (Z). Then there are
two possibilities: In all of 2'(Z) is no further
equilibrium state of the composite system which
would be characterized by a local maximum of
Sz, x)- Then there is no connection between the
{Xy,Z) configurations and the X configuration
which could be expressed in terms of equilibrium
thermodynamics. A complete microscopic theory
should be capable to describe all macroscopic
configurations X, X'y in micro-dynamical terms. The
actual possibilities at the present stage of the
microscopic statistical formalism do not scope,
however, with such an ambitious program. There-
fore it is important, that the second possibility,
namely the existence of a further local maximum of
Sz xy — say at Zy'=7Z1*e 2, (Z) — leads to a
fruitful application of purely thermostatic con-
cepts. In this and only this case we have called
(X, Z) metastable. (X1, Z) is then interpretable as
a phase-coexistence state, where the participating
phases are system-states of 2. The region 2:'(Z) is
operatively characterized by

U2 221", Z — Z')y R (21, Z)
cIn{(Z, X),(Z1*, Z — Z1%))

for all Zy" € 21’ (Z). The states of X7 are described
by the same set of state variables as for X. Never-
theless, 27 has new observables which are not
present in the X configuration. These are the density
differences z2* — 21* where

¥ = (Z1* ... Zy*"1)[Zy*n and
2p* =[(Z1...Z""Y) — (Zy*1.. . Zy*n L) [(Z% — Zy *m).

One should be aware of the fact that this set up
comprises a large variety of phenomena, since the
extensive coordinates Z include also those quantities
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which are only detectable by means of external
fields, like magnetic or electric moments etc. The
density differences are sometimes identified with
order parameters, so e.g. the mass density difference
for the fluid phase transition or the density differ-
ence of magnetic moments at zero magnetic field
for the ferromagnetic phase transition. These
density differences are fixed in the equilibrium state
and may be varied only formally. By construction
follows that (X, Z) for variable Z bridges regions
where (X, Z) cannot exist.

Having explored matters in Z;'(Z) the next
alternative is: 21'(Z) equals Z'(2)=2x(Z)\Z (Z)
or not. In the first case (X7, Z) is absolutely stable
and there exists no other constitution of the
material body with total observables Z and higher
entropy. In the second case one knows that there
is a (X, Z) with Ss,(Z)> Sy, (Z). It again has to
be investigated if (X5, Z) is only locally stable or
metastable, and so forth. Thus, there may be a
whole hierarchy of system-states <X, Z), (21,2,
(Xs,Zy ... for one and the same state tuple Z with
increasing entropy. The spontaneous transition
(i, Zy {241,274y, described at the end of
Sect. 3, is in reality often a matter of time, so that
to the hierarchy of configurations corresponds a
hierarchy of relaxation times in the non-equilibrium
treatment of these phenomena. In fact do exist
many variants of metastability for real material
systems which require an adequate formulation of
the thermodynamic principles.
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