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The theory of thermodynamic stability is worked out in terms of composite systems starting 
from basic principles formulated partially in operational language. In this connection a macro­
scopic ordering concept is introduced, and entropy is characterized as numerical measure for the 
degree of disorder. Various aspects of thermodynamic stability are investigated in operational 
and analytical terms laying special emphasis on appropriate neighbourhood sets. Some implica­
tions of metastability and neutral stability for the thermodynamic system concept are pursued.

1. Introduction

The general theory of thermodynamic equilibrium 
is due to Gibbs [1], who founded his classical 
investigations on the following principle: “For the 
equilibrium of any isolated system it is necessary 
and sufficient that in all possible variations of the 
state of the system which do not alter its energy, 
the variation of its entropy shall either vanish or 
be negative.” In spite of the enormous fruitfulness 
of the theory Avhich Gibbs developed from this 
axiom the literal formulation of the principle itself 
is unclear to the point of being paradoxical [2]: If 
an isolated thermodynamic system is not in 
equilibrium we cannot assign any definite value of 
the entropy to it (in the realm of equilibrium 
thermodynamics), and if the system is in equilib­
rium then the entropy cannot vary. In the sub­
sequent efforts to clarify the concepts in Gibbs’ 
principle, many authors made use of the notion 
of “virtual states” the considered system should 
take on. Eventually it turned out, however, that 
normal equilibrium states are perfectly suited if 
one does not vary  over the original state space but 
over that of a more complex system, which in many 
cases is to be chosen as a decomposition of the 
original system into two subsystems (confer e.g. [3],
[4], [5], [6]). In [2] and [6] one finds not only a 
detailed exposition of this composite system 
approach to thermodynamic stability — as well as 
historical remarks —, but also the interesting 
observation that this approach gives fundamental 
importance to the so-called thermodynamic opera­
tions which consist of the composition or decom­
position of thermodynamic systems or the im­
posture or relaxation of a constraint. These opera­
tive devices had not been incorporated into the
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formalized structure of the theory hitherto, but, 
of course, were used implicitly. Indeed, if the most 
fundamental principle of the theory requires for its 
selfconsistent explication the transition from the 
considered system to more constrained ones, then 
this comparison of different systems — made from 
one and the same material body — must represent 
for itself most fundamental structural features. We 
have interpreted this comparison as the essential 
part of a macroscopic ordering concept, which after 
some supplements is to be considered as the basic 
operative structure of the entropy observable.

In a separate work the formal elaboration of this 
idea is carried through. One starts with the implicit 
definition of the thermodynamic operations and 
defines then a (quasi) ordering (representing 
physical disorder) with these concepts as a mathe­
matical relation in the set of all system-states under 
consideration. This relation is then shown to have 
the structure of an extensive empirical observable 
and is identified with the entropy observable. W ith  
such an approach the entropy is characterized by 
an ordering structure in the sense of fundamental 
measurement, that means that in principle it may 
be measured without recourse to other observables 
introduced previously as, e.q., heat and absolute 
temperature.

This kind of approach is only described in Sect. 2 
of the present paper. Nevertheless, it provides the 
possibility to connect entropy with operational and 
ordering concepts in the subsequent reasonings and 
to clarify therewith some points otherwise not being 
accessible.

Since entropy is by the way of its introduction a 
numerical measure for the macroscopic disorder, a 
so-called order homomorphism, Gibbs’ fundamental 
maximum principle of entropy can be derived — if 
some additional properties of the compared system- 
states are valid. This refinement, which also reveals
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new aspects of the notion of thermodynamic 
stability, is investigated in Section 3. The stability 
condition is there formulated in the vein of the 
composite system approach but uses only the 
formalized symbols for thermodynamic operations. 
This language also enables us to work out a suitable 
concept of a thermodynamic system. After having 
postulated only local thermodynamic stability a 
system concept emerges with a single-valued 
entropy fundamental function certainly, but with 
also the possibility of constitutional changes by 
means of unstable relaxations.

In Sect. 4 the analytical formulations of thermo­
dynamic stability conditions are derived, and 
special emphasis is laid on the topology of appro­
priate domains in the state spaces of extensive as 
well as of density variables over which a system is 
stable. These investigations serve to discuss the 
physical consequences of special types of stability 
over bounded regions o f states.

Some implications of metastability and neutral 
stability are investigated in Chapter 5, others will 
be given on another occasion.

Let as add a word on the relationship between a 
purely phenomenological exposition of stability and 
the maximum principle of entropy as given here, 
and a statistical foundation of these structures as 
treated in [7]. Since the statistical mechanical 
theory leads to usual thermodynamic laws only 
after some peculiar idealizations it is indispensable 
to formulate the theory to be derived as concise as 
possible. We find it very  satisfying that our basic 
operational notions appear in a natural reformula­
tion also in a statistical theory and we hope that this 
connection will lead to some clarifications in the old 
problem of founding thermodynamics on a statis­
tical-microscopic theory.

2. Basic Assumptions

The set of assumptions presented in this Section 
is meant to describe (implicitly) the most charac­
teristic features of thermodynamic systems with 
the exception of the third law. It is, however, not 
a coherent axiomatic scheme, and critical comments 
will be given at the appropriate places. Anyhow, it 
is a concise formulation of the properties we shall 
use to derive further statements on the considered 
systems. One more assumption will be formulated 
in Section 3.

The collection of physical systems E  which 
concern us here will be denoted by SS. Every  
E e & ,  called “thermodynamic system”, assumes 
states Z in a certain set and we write <27, Z ) to 
indicate that E  is in the state Z. The use of the 
system-state pair <(E, Z ), sometimes shortened by 
a single symbol like P, enables us to replace Z by a 
tuple of state variables (see below) without loosing 
the detachedness to a specific system E. As basic 
set for the various relations to be introduced in the 
sequel, which in general relate system-states of 
different systems with each other, we consider

<?■= U Ui<Z’Z>}- (2.1)
The starting point of our approach is the charac­

terization of states by means of extensive observ­
ables. Here we understand by an extensive observ­
able on &  the following structure.

2.1. Definition. An extensive observable F  on #  
consists of a fam ily {Fa ;a e A }  o f (empirically 
determinable) state functions

F a : ^  IR, a e A Ec A ,
where A =  \ Ĵ Az . E very non-empty A2 contains

Zz3i
a special subset Es  so that AE is isomorphic to the 
set of all subsets of Es : A x 3 a  -+*■ Ea c E2 , and it 
holds

Fa =  ^ F a-.
a ’eEa

For a  e As  F a is called an observable of the kind F  
of E, for a e Ee (i.e. a -++■ {a}) F a is an elementary 
observable of the kind F  of E . For Ez F a is 
called the total observable of the kind F  of E.

Let be given E\, E2 e SS and a\ e A Zl and 
a 2 e AZi . Then the composed system E  =  (E i , E2) 
(cf. (III. 1) below) has at least the following observ­
ables of the kind F : F a i ,  F a2 and F a =  F a\-\- F a2, 
where Ea =  Ea\ U Ea2. This makes the extensivity  
property of F  explicit. A more detailed exposition 
of the empirical structure of extensive observables 
will be given on another occasion.

We are now ready to formulate our basic assump­
tions which will be grouped together by means of 
romanic numerals*.

(I) S ta t e  v a r ia b le s

(1.1) There exists a distinguished set {Fe \
1 ^ Q ^ r }  of extensive observables F e on 3P, so

* The content of an assumption (I.i) extends from (I.i)
up to the next break.
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that A e 4=0 for all 1 sS q ^ r .  F\ is the energy and 
•4ir=f=0 f° r a l̂ Z e 88. F%, F a , 2^Lcr< r, are 
various kinds of work (or deformation) coordinates.

The energy observables are often denoted by Ua , 
the work observables by A ea, 2f^Q f^o. The 
observables F ga, a e A ex, are called the inhibited 
extensive observables o f 27.

(1.2) For every 27 e 88 exists a fixed (but not 
unique) set of elementary extensive observables F m,
1 where F m e  F e for some g, so that the 
states Z e z  are in one-to-one correspondence with 
the w-tuples (Z1, . . . ,  Zn) : =  (F 1(Z), . . . ,  F n(Z)).

The F 1 . . .  F n are called the state variables of 27. 
We shall identify Z with the w-tuple (Z1, . . . ,  Zn).

2.2. Definition. 27 e 88 is called a work system if 
all its state variables can be chosen as work observ­
ables. The set of all work systems will be denoted 
by 88w • 8Sr£ '.=  88\88\; is called the set of proper 
thermodynamic systems.

(1.3) 88yf is a non-trivial subset of 88.
We stipulate throughout the paper that the state 

variables are to be chosen to include as few energy 
observables as possible. So will be the state variables 
of a work system in fact work coordinates.

(1.4) The state variables of a proper thermo­
dynamic system include at least one energy observ­
able.

(1.5) The set of all state tuples of 27 e 88t  con­
stitute a cone in [Rra.

The set of all state tuples of 27 will again be 
denoted by ^

Observe that (1.4) implies the possibility of heat 
contact for proper thermodynamic systems, the 
energy being independent of all other (macroscopic) 
state variables.

We denote by 88c the set of systems in 88 which 
have at least two state variables of the same kind 
and write 88 s for 88\88c . The systems in 88 s are 
called “simple” (or “to ta lly  reduced”), those in 88c 
are called “complex” . W e index here and in other 
cases the subset of 88 in the same manner as the 
corresponding subsets of 88. So we write

^c:= U  U  (2.2)
ZeJlc Ze<#z

and the like for 88 88t ,  88w etc.; 882 is given by

{<£,Z>} •U

(II) T h e rm o d y n a m ic  o p e ra tio n s

(11.1) C o m p o sitio n  o f  sy s te m s. For every  
27i, 272 e  88 there exists the “composite system” 
(27i, 272) e  88 with

z2) —  ̂ X  • (2-3)
The system composition is associative.

For system-states P  e  r2) we write

P  = <(27i, 272), (Zi, Z2)> =: ( P i , P 2) (2.4)
where

P i: =  <27f, Zf> , i  =  1 , 2 .

The intuitive meaning of (27i, Z2) is the combination 
of 27i and Z2 without interaction.

(11.2) R e la x a t io n  o f  a c o n s tra in t .  There 
exists a relation * R  c 88 X  88 with domain 88c and 
range 88. Let be 27 not of the form 27= (27t, 27w), 
27t e  88^, 27w e  88^ . Then <(27, Zy R (2 J ', Z 'y shall 
imply the following connection between the state 
tuples: There are components Zl, Z1 o f Z belonging 
to state variables of the same kind, so that Z' has 
one component Zl -\-Z  ̂ whereas the remaining 
components of Z' are equal to theZ m of Z, m =j=i, j. 
If

<27, Zy =  <(27t , 27w), (Zt , Zw)>

then <27, Zy -R<27', Z'y implies either the afore 
mentioned connection between Z and Z ', where the 
affected coordinates Zl and Z1 are not work 
coordinates of the same kind in Z t and Zw respec­
tively, or the following possibility may occur: In 
the transition from Z to Z' a pair of work coordinates 
A 1 of Zt and A m ofZ w  is replaced by A 1 A 171 and 
an elementary energy Ul of Z t is substituted by a 
not uniquely determined U1', energy conservation 
for 27 being presupposed; the remaining components 
of Z reappear unaltered in Z'.

In (II.2) we have introduced a global relaxation 
relation which may be considered as the union of 
more specified relaxation relations depending on the 
coordinates which they affect. One convinces one­
self that our definition of R  implies conservation of 
all total observables in the transition from <27, Z)

* A relation X  is a set o f ordered pairs. For (a, b) e  X  
we write also aX b . The domain 3 ( X )  is the set {a ; aX b  
for some 6}, the range 3$(X) is { b ;aX b  for some a ) .  
aX~l b o  b X a ; (a, b) e  X io  X 2 <> 3c with (a, c) e  X i  and 
( c ,b ) e X 2. I i  c I 2 and I 1 W I 2 are defined as in set 
theory. The diagonal relation A (A) of a set A is {(a, a ) ;  
a  e A}.
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to <27', Z'>. E ' is in any case different from E, 
because the number o f its state variables is one less 
than that o f E. And in general there cannot be said 
more about the relationship between E  and E '.

The intuitive meaning of the P-operation is the 
removal o f an internal constraint of a closed 
system E, which allows for the exchange of a pair 
of extensive variables which were inhibited in E. 
The physical realization of such an internal con­
straint — in the form of a wall or the like — as well 
as the process of its removal is assumed not to be 
of energetical significance in comparison to the 
energies of the systems. The realization of certain 
^-operations may well be complicated to achieve, 
since the invariance of some state variables in 
connection with the variability of other ones may 
be a difficult task. In this connection let us em­
phasize two points:

(1) A  relation like the P-operation only sets up a 
relationship between the initial and the final 
system-state and does not imply any restrictions 
for what happens during the concrete transition. 
(So closedness o f the system may temporarily be 
given up in the concretization of an P-relation.)

(2) A  relation which is elementary in the logical 
sense must not necessarily be simple in the practical 
realization.

(II.3) R e v e r s ib le  in h ib it io n . There exists a 
relation I  c 0  x 0  with I  c  P _1 which has the 
domain 0  and the range strictly smaller than 0 ^ .

B y definition (E ', Z 'y I (E , Zy implies <E ,Z y  
R  <E ', Z'y, and we have the same connections 
between Z and Z’ as specified in (II.2).

The intuitive meaning of I  is the imposture o f an 
internal constraint in a specific way, namely so as 
not to disturb internal equilibrium. This intended 
meaning of I  is not formalized by Assumption (II.3) 
alone, but would require additional postulates on 
the compatibility between R  and I  and the like, 
which will not be given here (cf. [8]). In the present 
formulation the meaning of I  emerges from the 
summed up Assumption (III) below. Here it may 
suffice as motivation to introduce I  as basic 
operational concept that one can give relatively 
simple practical criteria which decide over the 
valid ity of I .

Having accepted the relations R  and I  as 
fundamental notions one is able to define a macro­
scopic ordering structure.

2.3. Definition, (i) For P, P ' g0  we write

P < \ P ' (2.5)

and say “P ' is more disordered than P ” , i f  there 
are system-states Po e 0 t , Q, Q' e 0£w  and a 
product I J (R , I )  containing finitely many relations 
R  and I  in arbitrary order, so that

[ P ,P 0,Q ) n ( R ,I ) ( P ' ,P 0 ,Q') (2.6)

is valid; the case that 77 (R , I )  is an empty product 
shall be included into (2.6) and shall then be 
interpreted as the diagonal relation A (0 )  for the 
composite system-states framing the relation 
symbol.

(ii) We write

P  ~ P ' (2.7)

and say that P  and P ' are “order equivalent” , if  

P < JP '  and P ' <  P  (2.8)

are valid.
The relation <] is reflexive and transitive as 

follows easily from the definition and the fact, that 
the composition of two work-systems is again a 
work-system. Such a relation is called “quasi- 
ordering” (in [9] it is called “transition relation”), 
and it differs from a (partial) ordering by the lack 
of the property <1 n  [> =  A (0 ); that is : order 
equivalence does not imply equality.

The intuitive meaning o f (2.6) is an active 
formulation o f “adiabatic enclosure” , since we do 
not describe the properties of the walls which 
separate an adiabatically closed system from the 
surroundings but list up the operations on the 
system which are still possible for a system-state 
P  =  <E , Z} under adiabatic enclosure and which 
bring it to the system-state P' =  <E ', Z 'y. The 
possibilities incorporated into (2.6) are: finitely 
many internal relaxations of constraints, reversible 
inhibitions, and work contacts, where an arbitrary  
system-state Po may be taken under the adiabatic 
enclosure if it remains unchanged in the sense that 
its final form is the same as the initial one.

A satisfying feature of this active operational 
approach is the interpretability of the adiabatic 
enclosure relation <| as an intuitive appealing 
physical disorder concept in purely macroscopic 
terms. It will first probably be accepted that one 
and the same material body (observe that the total 
mass is conserved in (2.6)) is in a more disordered
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constitution (described by a system-state), if it has 
less internal constraints which keep up differences 
in the intensive variables, and that reversible 
inhibitions do not change the degree of disorder. 
As for the work contacts the same intuitive dis­
order concept may be applied to the internal degrees 
of freedom of a proper thermodynamic system not 
showing up in the state coordinates. They must 
exist, since the energy of such a system can be 
varied independently from all other macroscopic 
state variables. These internal degrees of freedom 
cannot be inhibited by the coarse work coordinates. 
Thus a work contact can only increase (or maintain) 
the degree of disorder. Let us stress, that the latter 
considerations on the internal degrees of freedom 
serve only for motivational purposes whereas the 
formalized disorder concept makes solely use of 
macroscopic observables.

The most interesting point is now, that the 
quasi-ordering <] gives rise to an empirical, 
extensive observable as formulated in [9]. That 
means that the structural properties of <1 give 
itself a prescription how to associate a (rational) 
number for the degree of order and the scale is 
unique up to positive dilatations and translations 
(cf. [8]). B y extrapolation one gets in this manner a 
continuous entropy function which measures the 
macroscopic disorder. We cannot present here this 
reasoning in its full extent but summarize the 
resulting properties of the thus obtained entropy 
observable in form of assumptions.

(Ill)  E n tro p y

(III.l) There is an order homomorphic mapping 

8 : 0>-+M+ (2.9)
i.e.

P < j P '  => S ( P ) ^ S ( P ' ) .  (2.10)

The value

s ( p )  =  s « r , z »  =  s i (z) (2 .ii)

is called the entropy of (Z, Zy. For fixed Z  the 
mapping

S £:<g£ -+U+ (2.12)

given by (2.11) is called the entropy fundamental 
function of Z. S? is assumed to be continuously 
differentiable and positive homogeneous of degree 
one.

(111.2) If

( Z ,Z )  =  ( (Z 1 ,Z 2) ,(Z 1 ,Z 2)>

then

Ŝ (Z) =  Sri(Zi) -f- Sr2(Z2). (2.13)

(111.3) Let Z, Z' e % have the same values for 
all total observables different from energies and 
work coordinates. Then

S z (Z )^ S A Z ')= >  {z,zy<](z,z'y. (2.14)

In spite of this scheme of assumptions (I) —(III) 
being not yet completed it is elucidating to inquire 
already at this stage about the traditional laws of 
thermodynamics. The first law is incorporated in 
the assumptions (I) on the state variables: One 
may deduce from (I) that there exists a total 
energy observable for every system which depends 
on the states alone and that this energy may be 
varied in a form different from work for every  
proper thermodynamic system. As for the second 
law, one thinks of (2.10) as its adequate expression, 
since it tells us that the entropy always increases 
for an adiabatic transition. However, this is only 
justified by the inclusion of a lot of other assump­
tions. So it is above all essential that the <]-relation 
is non-trivial in the sense that there are pairs of 
system-states which are in <]-relation only in the 
one direction and not in the other, a fact which 
follows from the domain assumption for I. Secondly 
it is of course important that the quantity which 
increases during an adiabatic state variation, is an 
extensive observable, depending on the states 
alone. Since these supplements have also to be 
added to the usual formulation of the second law, 
we shall in fact identify it with the order homo- 
morphy (2.10).

The zeroth law would follow from the maximum  
principle of entropy, which would at the same 
time provide the introduction of the intensive 
contact observables; but this principle is not yet 
incorporated into the formalism and requires 
extra assumptions which will be discussed in the 
next section. So one has a clear distinction between 
order homomorphy and the maximum principle of 
entropy.

3. Operational Formulation of Stability

In this section we shall lay emphasize on those 
stability statements which are connected with the
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thermodynamic operations. So let us consider a 
relaxation relation of the form

(E ’,z 'y  R (E ,z y  (3.1)

described in Assumption (II.2). According to (II.2) 
there is only specified a connection between Z' and 
Z but not between 27' and 27. And this cannot, in 
fact, be done generally, because a relaxation o f a 
constraint may initiate a radical change of the 
constitution of the physical system. W hat we have 
in mind is not the trivial change connected with the 
decrease of the number of state variables. Beside 
that there m ay occur changes in the systemic 
constitution which cannot be restored by the 
imposture of a reversible constraint. The relaxation 
of an inhibition may trigger very powerful physical 
processes. In the mildest form there may happen 
phase transitions in the usual sense or material 
mixing processes. But there may also take place 
particle reactions of increasing energy transfer, that 
is chemical, nuclear and elementary particle 
processes which may lead to new features of the 
involved systems, which could not be made out in 
the inhibited constitution. To understand this right 
one should remember that a frequent form of an 
inhibition is the spacial separation of the subsystems. 
One m ay advocate a less restrictive concept of a 
thermodynamic system than we use here (here one 
system has one entropy fundamental function with 
a fixed set of state variables), it remains nevertheless 
a special property of a relaxation (3.1), if there 
exists a simple connection between the initial and 
the final systems.

3.1. Definition. A  relaxation of the form (3.1) is 
called stable, if there is a Zq e with

<.E , z y i ( E ' , z 0' y . (3.2)

For a stable relaxation there is thus the possibility 
of regaining system-states of the initial system by  
the mere imposture of a reversible inhibition. This 
should be viewed as a pecularity of both systems 
participating in the relaxation. The definition 
implies that one stable relaxation leads in general 
to a whole variety of stable relaxations with the 
same final system-state. So are with (3.1) all 
relaxations of the form

(E ’,z * y  R (E ,z y

stable, since (3.2) is not affected by those operations 
which lead to <27, Zy.

W e have now worked out in an operational 
manner two concepts, namely order homomorphy 
and stability of a relaxation, which in combination 
lead to an explication of Gibbs’ maximum principle 
of entropy with purely thermostatic notions.

3.2. Theorem (Maximum principle of entropy). 
For given <27, Zy e 3P and E ' e 38 define a subset 
3 ) ?  (Z) c z> by the relation

@2? (Z) 3 Z’ O  <27', Z’y R  <27, Z> (3.3)

and assume all these relaxations to be stable. Then 
it holds

Sz(Z ) =  max S 2 ' (Z ') , Z 'e ^ ( Z ) .  (3.4)

Proof. Because of stability of the relaxations (3.3) 
there is a Zq e < € with

<27, Zy I  <27', Zo'y . (3.5)

Since I  c  iü-1 it follows

Z o 'e ^ r (Z). (3.6)

Order homomorphy leads from (3.3) to

S f W g S d Z )  (3.7)

and from (3.5) to

S 2 (Z) =  S z ’ (Z0' ) .  (3.8)

Combination of (3.6), (3.7) and (3.8) gives (3.4). □

W hy m ay we consider Theorem 3.2 as a reformu­
lation of Gibbs’ maximum principle of entropy as 
cited in the introduction ? That our reformulation 
as a theorem has another logical status than a 
principle does not affect its content but only its 
connection to other parts of the theoretical for­
malism. W e found it indeed very elucidating to 
divide the maximum principle into the two 
mentioned parts. As for the content one sees that 
in contradistinction to Gibbs’ statement the domain 
of variation in (3.4) is clearly specified and consists 
of usual equilibrium states. But it is a domain of a 
thermodynamic system different from the original 
one, a fact which hardly can be avoided in the realm  
of equilibrium thermodynamics. I f  one accepts this 
method of varying states then one could, of course, 
proceed to more complex partitioned systems with 
still more internal variables to vary. The reason to 
choose the special form (3.4) is simply that all more 
complicated variation methods can be reduced 
(locally but not globally) to the given one. This is 
in principle — but not in all details — a well
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known manner of stating the maximum principle 
of entropy in a definitive language. Our approach 
has beside that revealed the following points:

(1) The existence of a nontrivial domain of 
variation in the entropy maximum principle is the 
consequence of a special connection between some 
system-states of the two systems involved: they  
are connected by means of stable relaxations.

(2) The entropy maximum principle does not 
cover the full content of the second law, since the 
latter implies, e.g., order homomorphy ( = increase 
of entropy) also in the case of unstable relaxations.

Let us now turn to the notion of thermodynamic 
stability which is usually formulated by means of a 
given entropy fundamental function and should 
also in our operative language refer to one and the 
same system. For this we replace 27' by (27, E) in 
Def. 3.1 and consider a connection between the 
system-states in form of a product of relaxations:

<(27, E), (Zx, Z2)> Rn <27, Zi +  Z2> . (3.9)

Relation (3.9) expresses again a special property of 
all system-states showing up there, and this even 
more if all relaxations involved are stable. I f  we 
shift emphasis to the right hand side we arrive at 
the following definition:

3.3. Definition. For given (E ,Z ) e 3d let 2 (Z )  c ^ v  
denote a set of state tuples with

Z\e 3)(Z) => Z — Zi g S^(Z), (3.10a)
and

{Z';Z' =  XZ, X e (0 ,1 )} cB { Z ). (3.10b)

We call <27, Z> stable over 2{Z ) if there is a 
Z\° e @(Z) so that

<(27, 27), (Zx, Z -  Zi)> £*»<27,Z> (3.11a)
and

<2-, Z> 7» <(X, 2 ) ,  (Z A  Z -  Z!»)> (3.11 b)

is valid for all Z\ e 3>(Z).
Observe that we did not assume that the value 

Z i° o f the equilibrium decomposition is unique. Let 
be in fact Z i* : — XZ, X e (0, 1). Then Z\* e S ’ (Z) 
and

<(27, E), (Zx*, Z -  Zx*)> Rn <27, Z> . (*)

On the other hand, homogeneity of S z  and (3.11b) 
imply

S z iZ ^  +  S s iZ - Z !* )
=  S s iZ f )  +  S £(Z -  Z i °).

In virtue of the assumption (III.3) we have then

<(27, E );(Z 1* , Z - Z 1*)y 
~ <(27, E ) ; (Zxo, Z -  Z,o)> ~ <27, Z> . (**)

B y means of a lemma of [8] one concludes from (*) 
and (**) that

<27, Z> in  <(27,27), (Zi*, Z -  Zx*)> .

Thus all homogeneous partitions of <27, Z ) are 
achieved by means of reversible inhibitions.

Definition 3.3 contains two different aspects of 
stability, both of which are tested by splitting 
<27, Z ) into a composite system. The one we have 
stressed here is that of constitutional stability 
which prevents a radical systemic transformation 
after relaxations of constraints. The other more 
usual one concerns this approach to equilibrium 
which is given by the combination of (3.11a) and 
(3.11b): A  “disturbed state” <(27, 27), (Z i,Z  — Zi)> 
tends back to the stable “configuration”

<('£’, E), (Z]°, Z — Z]°)>

in a certain region of disturbances 3>(Z). The size 
o f^ (Z )  is in both regards a measure for the degree 
of stability.

3.4. Definition. <27, Z ) is called globally stable if 
it is stable over

(3.12)

and locally stable if it is stable over the intersection 
of some w-dimensionally open decomposition region 
9{Z ) with ®E(Z).

Before stipulating the kind of stability which is 
generally to be expected for thermodynamic 
systems we discuss some consequences of local (and 
not global) stability.

3.5. Proposition. Let <27, Z ) be locally stable 
over i^(Z), and define

2 ’(Z) :=2z{Z)\9{Z) # 0 .  (3.13)

Then there exists for every Z ia e S>'(Z) a thermo­
dynamic system 27a such that

(i) <(27, 27), (Zia, Z — Z !a)> R n <27a , Z> (3.14) 

and

(ii) S ^ Z X S z J Z ) .  (3.15)

Proof, (i) The existence of a system 27a can, of 
course, be deduced only from existence assumptions 
put into the formalism previously, which here is
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done via the domain assumptions for R. e @'(Z) 
makes (3.11) invalid. (3.11b) being independent of 
the value of Z\ one has to modify (3.11a). B y  
assumption is Z ia e ^  and can thus be assumed 
of 27. Since (Zia, Z — Zi a) has at least n pairs of 
components of the same kind one sees that

<(27,27),(Zi«, Z -Z i« )>

is in the domain of R n and must have a partner 
<27a ,Z>. The only way to break (3.11a) is then  
Ect =\= E.

(ii) Assume now
Är (Zi«) +  Ss {Z -  Z&) fg S£{Z) , (3.16)

for Zi a e &>\Z). Because of local stability there is a 
Z ^ e ^ (Z )  with

S z iZ f )  +  Sz(Z  -  Z S)
^ S s iZ M  +  S z i Z - Z !  0). (3.17)

B y Assumption (III.3) we have then

<(27,27),(Zi“, Z - Z S ) }
<<{Z,E),{Z1* , Z - Z 1 o)> (3.18)

and by (3.11b)

<(-27, Z), (Zi°, z  -  Z ,0)> ~ < r, Z> (3.19)

which together gives

P«:=<(27,27),(Zi«, Z -Z i« ) >
< ]< 27,Z > = :P . (3.20)

The explicit meaning of (3.20) is
(Pa, P 0 , Q’) IT(R, I) (P , P o , Q) (3.21)

for some P qG ^, a pair Q', Q e , and some 
product 1J(R , I). Since evidently all total observ­
ables are conserved in (3.20), no work can be 
exchanged between (E, E) and 27 w and we have 
Q' =  Q. A  careful analysis of the combinatorical rules 
for R  and I  — outside the scope of this presenta­
tion — shows, that

pv-R np

can be derived from (3.21). This would, however, 
contradict our assumption Z\a eS>’(Z). Thus (3.16) 
must be replaced by its negation

S£(Z) <  S z iZ f )  +  Sz(Z  -  Z t f  . (3.22)

Combination of (3.22) with (3.14) and order homo- 
morphy lead to (3.15). □

In general there cannot be said anything about 
the relationship between the E a and E  and between

the Ea amongst each other. This generality is 
obviously to wide for a definite theory. On the 
other hand the restriction of the thermodynamic 
formalism to globally stable states only would 
exclude, e.g., the fruitful treatment of meta­
stability by equilibrium thermodynamics. We, 
therefore, choose the middle road by making the 
following assumption.

(IV) L o c a l s t a b i l i t y

E very (E , Z} e 3P is locally stable in the sense of 
Definition 3.4.

Let us indicate some immediate consequences of
(IV). First, Ex o f (3.14) has to be locally independent 
of Z i a, which leads to an agreeable structure for the 
formation of new thermodynamic systems. Second, 
we m ay deduce that every <27, Z} is the outcome 
of a fam ily of stable relaxations. Remembering the 
definition of a product of relations, (3.11a) and 
(3.11b) are equivalent with

i{E ,E ),{Z 1, Z - Z 1y>
• Rn- 1 <27', Z'y R  <27, z y  (3.23)

and
<27, z y  I  <27', Zo'y

• / » -1 <(27,27), (Z^, Z -  Zx0)> (3.24)

respectively. So, for all <27', Z'y which may appear 
in (3.23) if Z\ varies in the w-dimensionally open 
region &>(Z), the last step in (3.23) constitutes a 
stable relaxation. Applying the maximum principle 
of entropy to this set of relaxations, one obtains 
from the necessary conditions a characterization of 
the internal equilibrium by the equality of a pair 
of intensive parameters. This being mentioned to 
underline the importance of local stability.

Let us conclude our operative discussion of 
stability by the symbolic description of what 
happens in a spontaneous transition from the 
locally stable system-state <27, Zy to the more 
disordered configuration <27a , Zy predicted in 
Proposition 3.5. Since the state variables have the 
same values in both system-states, the increase in 
disorder cannot be due to a work contact or to 
direct internal relaxations of constraints. The chain 
of configurations the closed system has to go through 
m ay be written as

<27, Z> (Ä -i)»  <(27,27), (Zxf, Z -  Z{)y
-R n(E o ,,Z y  (3.25)
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where Z\ e & (Z ) , the domain with greater density 
differences between the subsystems (cf. (3.13)). The 
crucial step is the first relation in (3.25), considered 
as a spontaneous decomposition o f <27, Z> into 
subsystems with unequal densities. (Usually the 
i?-1 -relation is interpreted as the effect o f external 
manipulations.) In a quasi-static realization of this 
decomposition, the state tuple of the first sub­
system had to vary  from the equilibrium value Z±° 
through neighbouring values Z\ to the more 
distant Z\ . The transition Z i° -> Z i is connected 
with a decrease of entropy, whereas Z\ —> Z\ is 
accompanied by an increase of entropy. The first 
step is prevented by the second law and the second 
step by a gap in the state space, as is shown in 
Section 5. Thus the first part of (3.25) can only be 
accomplished, i f  at all, in one single non-equilibrium  
transition, and this in general not for the whole 
system but in subsequent processes for small parts 
of the system. That is, we have to rescale (3.25) to a 
lower size. A more refined discussion o f such 
phenomena requires of course analytical methods.

4. Analytical Formulation of Stability

W e investigate now the consequences of local 
stability for the entropy fundamental function and 
stress the topological properties of a suitable 
decomposition region S)(Z ) which will always be 
assumed to contain all Zi =  AZ, Ae  (0, 1), and to 
satisfy

Z ie & (Z ) => Z — Z ie@ {Z ). (4.1)

4.1. Definition. An entropy fundamental function 
S £ is said to satisfy stability at Z over Q)(Z) c if

S s (Z) =  max [S z (Z i) +  S L (Z -  Zi) ]. (4.2)
Zie9{Z)

In virtue of Assumption (IV) for every <27, Z> e 2P 
there must exist an appropriate w-dimensional 
Q}(Z) so that (4.2) is valid. This is an easy
consequence o f order homomorphy. On the other 
hand does (4.2) not imply (3.11) without Assump­
tion (IV). For, if  Z i°e@ (Z ) is the maximizing 
decomposition coordinate tuple, then

S 2 (Z) =  SsiZjO) +  Ss (Z -  Zio) (4.3)

does strictly speaking not imply the operational 
relation

<27, Z} in  <(27,27), (Z io, Z -  Z ^ )) (4.4)

by means of (I) —(III) alone. It is, however, inter­
esting that

Sz(Z i) +  Sz(Z  — Z i)
^ S r (Z i° )  +  S z ( Z - Z i 0), VZiG ^(Z) (4.5)

gives because of (III.3)
<(27,2 7 ) ,(Z i,Z -Z i)>

<<(27,27),(Z1o , Z - Z 10)>. (4.6)

And this would lead to
<(27,27), (Z i, Z -  Z\)y Rn <2 -, z> (4.7)

if (4.4) would be available. So, only with Assump­
tion (IV), which provides (4.4), Eq. (4.2) is equiv­
alent with (3.11).

We consider here (4.2), however, as a purely 
analytical property of the function S E and admit 
also decomposition regions 3>(Z) of smaller dimen­
sionality m than the dimension n of Because of 
homogeneity stability o f at Z over ^ (Z ) induces 
stability at /Z over XSJ(Z) for all A >  0. This 
redundancy and a certain clumsiness of (4.2) may 
be avoided by using density variables. In order to 
pass freely from extensive state variables to density 
coordinates and vice versa, some geometrical 
properties must be shown of 3>(Z). We elaborate this 
point carefully, because some analytical statements 
in the density picture lead only to physical state­
ments if they can be retranslated into the language 
of extensive variables.

Homogeneity is the reason that every positive 
state variable can be used as “size variable” which 
characterizes the largeness of the system. (One may 
thus, e.g., use the energy of a subsystem as size 
observable for the composite system.) We assume 
w.r.i.g. that Zn is the size variable and define for 
Z c ^  the (n — 1)-tuple of density coordinates by

z :=  (Z1fZn, . . . , Zn~l !Zn) . (4.8)

W e write also
Z =  Zn (z, 1 ) . (4.9)

Introducing for all A e U the hyperplanes

je ^ n :=  { Z ;z e R » -1,Z» =  A}, (4.10)

we define the crossections o f^ (Z ) as 

@x{Z) :=  2 (Z )r\ J^ x n
=  :A (j8a, 1), A e R , (4.11)

where by definition

:=  {2 ; 2 e U»~\ X(z, 1) e & A(Z)} . (4.12)

W e assume throughout the paper that 2 (Z )  is 
not contained in 34?Qn. I f  then 3>(Z) is an m-dimen-
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sionally open set, then is (m — l)-dimensionally 
open, the empty set being so by definition. Relation
(4.1) is valid, iff

I
zi e o  a - f  Zn _  (z -  zx)

=  : Z2 e  J(Zn-A) (4.13)

for all X g (0, Zn). Whenever convenient we replace 
X by

* :=  X/Zn . (4.14)

The specific entropy is given by

ss {z) :=  a s {Z)jZ* =  £x (z, 1) . (4.15)

4.2. Proposition. is stable at Z over 2 (Z ) ,  iff 

ss (z) =  max [x8£{zi) +  (1 — x)8£(zz)] (4.16)
Z l G

for all « g (0, |], where -2* = £(xzn) is given by
(4.12), and where

x
z2 =  z +  - -------(z — zx) = :z 2{ x ,z i) . (4.17)

1 —  X

Proof. Since

9 (Z ) =  U  &JL0) ■ (4.18)
Ae(0, Z”)

Equation (4.2) is equivalent to

S s (Z) =  max [Sz {Zi) +  8 S (Z -  Zx)\
Z1 e 2 x{Z), VAg(0,Z»/2]. (4.19)

Dividing (4.19) by Zn gives (4.16). □
Since (4.16) is not changed if we replace Z and 

@(Z) by ßZ and ß 2 (Z ), ß > 0 ,  the dilation de­
generacy is removed. On the other hand a whole 
family of regions is now involved instead o f a single 
one. A simplification is only possible for special 
decomposition regions.

4.3. Definition. A decomposition region 3>(Z) will 
be called simple, if it has the form

0(Z ) =  n  (Z -  t f ) , (4.20)

where ^  is an m-dimensionally open cone with a 
bounded cross section circled around z, i.e.

V =  {Z-,Z =  X { z ', l) ,X > 0 ,z ' e£ (z )}  (4.21)

and the (m — l)-dimensionally open region J(z )  
satisfies

z' g ü (z) => z '- f  c(z — z') g ü (z) (4.22)

for all e e  [0, 1].

In this case the regions Qx in (4.16) can be 
obtained from J2(z).

4.4. Lemma. Let be S>(Z) a simpel decomposition 
region -with J2(z) as in (4.21) and J2X, x e  (0, |], its 
cross sections according to (4.12). Then the follow­
ing relations are valid.

(i) For x g  (0, |] holds

=  {z i; zi g J2 (z) and Z2 (x, z\) e Q (z)} (4.23) 
(cf. (4.17)).

(ii) For x < ix ' holds

£*'CJ2*. (4.24)

(iii) 3xo g  (0, | ]  with 0 <  x 5S xo implies

J x =  J(z ) (4.25)

and xo <  x ^  | implies 

J *  +  J2(z).

(iv) x0 =  \ , iff

z ig J ( z )  => Z2 =  2z — z\ e J 2 ( z )  . (4.26)

(v) 3>(Z) r\ ^ x n =  X(JH{z), 1) (4.27) 

for all 0 <  X ^  xo Zn.

Proof, (i) Z\ g  Q>/{Z) for X g  (0, Zre/2], iff

Zxn =  X and Z\ e  and Z — Zi g  ^  . (4.28)

The first two properties in (4.28) lead to Z\ =  X(z\, 1), 
zi g !( z ) ,  the last one gives

Z> =  Zj — Z\ =  (Zn — X) (z2, 1)

where

z2 =  z2 {x, Zi)

=  z +  - ---x ...- ( z - z i ) e M { z ) .  (4.29)
1 — x

Since the argumentation can easily be reversed, 
z i , 22 [x, zi) g  2L (z) is necessary and sufficient for 
zi g  (where again X =  xZn).

(ii) Because M(z) is circled around z Eq. (4.29) 
implies

z2(xr, zi) g  J  (z) for all 0 <  x' ^  x . (4.30) 

This proves (4.24).

(iii) Define for all zi in the closure J2(z) of J(z )

xo (z i) :=  sup {x ; xg (0, | ] , z2 (x, zi) g  J  (z)} .
(4.31)

14 1 5
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*o(zi)> 0  for all z i e i ( z )  since £L(z) is (m — 1)- 
dimensionally open, and decrease of x diminishes 
the Euclidean distance ]| z — z21|, so that zo. enters 
finally 3  (z) for x >  0.

Define furthermore

xq :=  inf^o(^i); 2 i e i ( z )  (4.32)

which is greater zero, *2(z) being compact. We 
observe that the infimum in (4.32) is not assumed 
in 2L (z) since for a given z\ e 3, (z) there is always 
an z\ on the line determined by 2 and z\ for which

xo (z i)  <  » 0(21)

is valid. Therefore x ^ x o  implies
x< x o { z i)  for all z ie J2(z)

which gives
Z2(x, zi) e 3 (z ), Vzi e j2 (2),

what in turn is equivalent to 3,X — Q(z).
I f  on the other hand x > xq, then there is a 

z i £ i ( 2) with x(zi)<Cx and zz(x, 21) ^ J2(z). Thus 
J(2)\ J^ # = 0.

(iv) xo — j  o  J&1/2 (z) — 3  [z] o  for all z\ e J2(z) 
is Z2{\, 21) =  22 — 21 eJ2(z).

(v) In virtue of (4.11), (4.14), and (4.24) the 
valid ity of (4.27) is immediate. □

W e see from the Lemma that for simple decom­
position regions the domains of variation in the 
density picture, the sets J2X, xe (0, |], are obtain­
able from the single set M(z) by (4.23). I f  =2 (2) is 
invariant under reflections at 2, then all J2X coincide 
with it. But reflection symmetry is too narrow an 
assumption to be suitable for all applications. So, 
instead of setting up further requirements on the 
variation domains we shall look for alternative 
forms of the stability condition itself.

Let us introduce the vector p  (2) with components

Pi{z) :=  0sr (z)/0zi, i ^ i ^ n  — 1 ,  (4.33)

and the subtracted entropy density

8% (z ;z0 ):= sz (z )—p (z 0 ) 'z .  (4.34)

4.5. Theorem. is stable at Zq over the simple 
decomposition region S>(Zq) (with cross section 
J2(z0)), iff

s*{zo;z0) =  max s*(z;z0) . (4.35)
ze J(zo)

Proof, (oc) We assume stability and use (4.16). 
For arbitrary z i e l ( z )  there is a  ̂e (0, -|] with

z\ e QX’ for all 0< .x  ^ x .  This results from (4.25) 
and (4.24). Then, dropping for a while the index S ,  
we get from (4.16)

s(z0) ^  x ' s(2i) +  (1 — x') 5 (22) (4.36)

where

Z2 =  Z0 +
1 —  X

rizo  — 2l) =  22 (x',Zl)

Thus
1 — x'

s (20) — « (21) ^ -----7—  [s (22) — * (20)] (4.37)x

for all x e  (0, x]. Performing x ' -> 0 we obtain

s (z0) — 8 (21) ^  (20 — 21) • p  (20) (4.38)

which is equivalent with (4.35).
W e start from (4.35). For every x e (0, |] holds 

for all z i e J 2 x ( z0 ) that z 2 (h, zi) e ü(z0). Thus for 
all 21 e  J2x(zo) (4.35) leads to

5 (20) — s(2i) ^  (20 — Zi) -p (z0)

and to

(22 — Z0 ) - p  (20 ) ^  « (22) — 8  (20) .

(4.39)

(4.40)

Since

22 — zo =  ------
1 —  X

(4.39) and (4.40) give

(zo — 21)

which easily leads to (4.16). □
The geometrical meaning of (4.35) is best under­

stood in the form

ss {z) ^  «r(z0) +  {z — 20) ’ P(zo) , 
V2G^(Zo) . (4.41)

The r.h.s. is the tangent hyperplane on the entropy 
surface through ( z q , Sv.(zo)) and all entropy values 
for 2 e 3  (20) have to lie below this hyperplane.

Multiplication by Zq11 transforms (4.35) back 
into the space o f extensive variables.

4.6. Proposition. S r  is stable at Z0 over the simple 
domain S>(Zq) with crossection 3(zo), iff

S£{Z0) — 2 Pi(Z0)Z0i
1=1 n — 1

=  max Ss { Z ) - '2 tp i {Z0)Z* (4.42)
Ze-T(Zo) L i=  1
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where

'r (Z 0) := Z 0n(J2(z0) , l ) .  (4.43)

One should observe that beside the specification 
of domain properties our reasoning gives the exact 
equivalence of (4.42) with (4.2). This could not 
have been achieved treating (4.2) by means of the 
Lagrange multiplier method.

Also in (4.42) are the domain properties some­
what peculiar. ^ (Z q) is an (to— 1)-dimensional 
region if @{Zq) has the dimension to. I f m =  n, one 
extensive variable is to be kept constant. But this 
must not necessarily be the total energy. Neither 
are there specific order-relations among the states 
in ^ (Z q). Both facts indicate that (4.42) cannot be 
the physically meaningful explication of the 
fundamental Gibbs principle in spite of being 
mathematically equivalent to it in some cases.

5. Metastability and Phase Coexistence

By further development of the analytical methods 
we refine our discussion about what may happen to 
a system in a special kind of locally stable state. 
We proceed first in the density picture. In virtue of 
Theorem 4.5 it is reasonable to define the various 
notions of stability directly for the specific entropy 
s£. The physical domain of s^ is the crossection 
of i.e.

z — A(J2z, 1 ) .

is an (n — 1)-dimensional set. Often the mathe­
matical domain of sz is larger than &E.

5.1. Definition, (i) ss  is stable at zo over the region 
°U{zQ), Rn-iD ^ { zq)3Z q, if

<s*(zo; Zo) =  max s%(z\ z0) . (5.1)
2 6®(Z o)

(ii) s2 is locally stable at zq , if  there is an (n — 1)- 
dimensional, circled region 2L (zo) 3 zo, so that
(5.1) is valid with =2 (zo) replacing tf/(zo).

(iii) sE is stable in a region °U, if it is locally stable 
at all ze°U.

According to Assumption (IV) sE has to be stable 
in the physical domain

5.2. Definition, (i) For z\, z2 £ IR”“1 define the line 
segment

l[z1,z 2] :=  {z ; z =  z\ +  e(z2 — zi), e £ [0,1]}. (5.2)

(ii) °U c [Rw_1 is called convex, if z\, z2 £ °ll im­
plies I [zi, z2] c °ll.

W e see that a region is convex, iff it is circled 
around all its elements.

5.3. Proposition, (i) Let be sE locally stable at zq 

and assume there is a z\ with

«*(21; 20) >  s*(zo;zo) • (5.3)
Then I [z\, Zo] contains points in which sz  is not 
locally stable or not defined.

(ii) sE is stable in the convex region iff for all 
zo £ °U sE is stable at zq over (cf. (5.1)).

(iii) sE is stable in the convex region °ll: iff for all
Zo , Z £  °U

(20 — 2) • p  (z0) ^  (20 — 2) • p  (z). (5.4)
Proof, (i) Assume sE to be defined in 1 [zi, zo] and 

select therein that point z', in which«* (z; zo) is 
locally minimal, and which has the greatest dis­
tance to zo- Such a z' must exist since s*(z; Zo) is 
locally maximal at zo and nevertheless increases 
to  a value larger than this maximum (cf. (5.3)). 
Define

z{e) :=  z0 +  e(zi — z0)

and set z' =  z(e'). Then (dropping the index H)

=  (21 — 20)-p (z ')  — (z! — zo )-p (z0) . (5.5)

For every e e (s', 1) we have

s * (z{e) ; z0) >  s*(z';zo) (5.6)

or equivalently

s(z{e)) — s(z') >  (z(e) — z') •p [z0) .  (5.7)

Because of

z(e) — z' =  (e — s') (z± — z0)

(5.5) leads to

(z (e) z') • p {zo) =  (z (e) — z ') -p  (z') (5.8)

which modifies (5.7) so that

s*(z(e); z') >  s*(z'; z') (5.9)

emerges, for all e e {s', 1). But (5.9) contradicts local 
stability of z\

(ii) Assume there is a zo £ so that sE is not 
stable at zo over °U. Then there exists a zi £ °U, so 
that (5.3) holds true. Since sz  is locally stable at zq
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we can apply (i). Then on the one hand 1 \ z \ , z q \  

contains points in which ss  is not locally stable, on 
the other hand, because of convexity I [z±, zo] c °U. 
This contradiction is only avoided if sE is stable 
at z0 over ^  for every z0 e °ll.

(iii) Let be zo, z e °U, then (ii) gives

*(«o) — zo-p(zo) ^  «(2) — z -p (z0)
and

8 (z) — z • p  (z) ^  a (z0) — zo-p(z).

Thus

(z0 — z )-p  (zo) ^  5 (z0) — s (z)
^  (z0 — z) ■ p  (z)

leading to (5.4).
Let reversely (5.4) be valid for all z o ,z e % . 

According to the mean value theorem one has

*(zo) — -s(2) =  (20 — z )-p (z ')
for a

z' — Zo +  e' (z — z0), e e(0, 1).

Now (5.4) holds also for the pair z q ,  z' e i.e.

(z0 — z') -p(zo) ^  (z0 — z ')-p (z ')  

which after multiplication by 1/e' leads to 

(z0 — z )-p  (zo) ^ { z 0 — z )-p  (z')

=  «(zo) — s(z).

This gives local stability for all zo e °U. □
W e immediately draw an important conclusion.

5.4. Proposition. Let be sr  locally stable at every  
z e  t c  but not at all z e °U be stable over °U. 
Then °U is not convex.

Proof. I f  °U would be convex, then local stability 
would in virtue of Prop. 5.3 (ii) lead to stability 
over °ll at all z e °ll. □

Thus, if a thermodynamic system has locally but 
not globally stable states then as well as E 
cannot be convex. Let us mention in this connection 
that the topology of the physical state space of E  is 
made still more complicated by the third law: 
hypersurfaces with absolute temperature 0 (and 00) 
are to be excluded from and corresponding cones 
from z  (cf. [10]).

W e resume here the discussion of the changes a 
system m ay undergo in the neighbourhood of a 
locally stable system-state <27, Z> and remember 
that in general the more disordered constitution of

th at material system, here denoted by <27', Z>, 
stands in no simple relationship to the original one. 
There are, however, important cases where 27' may 
again be expressed by configurations of 27.

5.5. Definition. A system-state <27, Z> which is 
only locally stable (over the decomposition region 
@(Z)), is called metastable, if there exists an 
w-dimensionally open decomposition region 3>(Z) 
with

® {Z)% @ {Z)c@ s {Z) (5.10)

and a Z\*,

Z1* e ^ '{ Z ) := ^ { Z )\ ^ (Z )  (5.11)

such that
<(27, 27), (Zx', Z -  Z]/)> R n <27', Z> (5.12)
o I n <(27,27), (Zi* Z -  Z i*)), VZi' e &  (Z)

is valid.
In our definition of m etastability we have 

included properties of the surrounding region of 
state space which are usually assumed implicitly 
but not stated explicitly. They say that also in the 
more distant part S'(Z ) of the decomposition region 
the relaxed composite system approaches a system 
state <27', Z ) which is order equivalent with a 
composite system-state of the previous type. The 
implications of this relatively simple property shall 
support the adequacy of our definition.

For simplicity let us assume, that there are cones

<?:= ( J  A(<?(z), 1)
A>0

# :=  ( J  A ( J ( z ) , l )  (5.13)
A>0

with j2(z) and k{z) (n — l)-dimensionally open, so 
that

Ql (Z) =  ^  n  (Z — #) and
^ (Z ) =  # n ( Z - ^ ) .  (5.14)

Observe that the cross sections are, however, not 
assumed to be circled around z. The restricted 
crossections c  ^ ( z )  etc. are defined as in (4.23).

5.6. Proposition. Let be <27, Zo) metastable accord­
ing to Definition 5.5. Then the following relations, 
formulated with the denotations of Def. 5.5, are 
valid.

(i) S z (Zo) <  S 2’ (Zo) (5.15)
=  max S(S iz ) (Z i ,Z o —Z i)

Zi e2(Zo)
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(ii) sz (z0) <  y *  ^ (z i* )  +  (1 — «*) «r(«2*)
^ « '«x (z i')  +  (1 — *') «i;(z2') (5.16) 

V«' 6 (0, |] and Vzi' e StX’ (zo)

where x *  :=  Z i*w/Zow e (0, (choose the indices of 
the subsystems accordingly) and where

ycr
Z2 =  Z2' (*', Zi') =  Z0 +  -------- (z0 — Zi').

I  — X

(iii) p (z i* )  =  p{z2* ) , (5.17) 

whereas Zi*, zo, z2* are pairwise distinct.

(iv) s f(z i* ;z i* )  =  s*(z2* ;z 2* ) . (5.18)

(v) For (at least) one z**, i =  l ,  2, one has

s * { z i* -, z0) >  s*(z0 ;z 0) . (5.19)

(vi) 21 is not circled around zo (and thus not 
convex).

Proof, (i) (5.15) follows from (3.15) and by order 
homomorphy from (5.12) combined with local 
stability of <27, Zo>.

(ii) Divide (5.15) by Z qn and set x '  =  Z i'n/ZoTC.

(iii) Apply (5.16) with x '  — x *  fixed and z± v a ry ­
ing in an (n  — 1)-dimensional neighbourhood of zq 
contained in J2X*. The necessary condition for the 
maximum at zi* leads to

which gives (5.17).
Since Z i* g 3 (Z q )\ S ’ (Zo), it cannot be of the 

form Z±* =  XZq, for a A e IR. Thus zi* =t=zo. Since 
x* >  0 one obtains pairwise inequality of zi*, zq  , z2*.

(iv) Set in (5.16) z\ =z±* and v a ry  x ' near x*. 
Because ÖJ(Z) being open z\* e  =2*' for \x* — x'\ 
small enough. The necessary extremal condition at 
x' =  x*  is

d
\x' S (Zi*) +  (1 — X') S (z2 («', Zi*))]x '=x* =  0  ,

ax

which gives
Zq  —  Z i *

0 =  a (z i* )  — 5 (z2 *) + ^ ( z 2*) i _ y *  ,

and via (5.17) and the definition o f z2* leads to 
(5.18).

(v) Assume

s*(z0 ;z0) ^ s * (z i* \ z o)

be valid for i  =  1 ,2 . Then follows

x* s*  (zi* ; z0) +  (1 — x*) s* (z2* ; z0) 
^ s * (z 0 ;z0)

which is equivalent with
X* s (z i* ) +  (1 —  X*)s(Z2*) ^ s (z o )  

and contradicts the first part of (5.16).

(vi) From (5.18) and Prop. 5.3 (i) follows that 
l[z i* , zq] contains not locally stable points and is, 
therefore, not contained in J2X* 3 Zi*, zq. □  

Because of Prop. 5 .6 (vi) there are in l(z i* , zq] 
points which cannot be taken on as states from 27. 
Consider, however, the composite system

<(27,27), [cliZi *, oc2Z2*)y 

with cut >  0, i  =  1, 2. Since
p{cmZi*) = p{Z i*) =  p (Z 2*)

=  i>(a2Z2*) (5.20)

and since the B  und I  relations should be invariant 
against positive dilatations we may deduce from
(5.12) that

<(27, 27), {cliZi *, a2Z2*)> B n
o in  <(27, 27), (aiZ i*, a2Z2*)> (5.21)

is valid for a* >  0, i=  1 ,2 . Let us denote 

% *:=  {Z';Z' =  a iZ 1* +  a2Z2* ,a i ,a 2 > 0 } .  (5.22)

5.7. Definition. For Z' e  ft*  we define <27', Z'> by  
the relation

<(27, Z), (« !Zx*, a2Z2*)> (7-i)«  <27', Z'> (5.23)

the existence of the right hand side partner follow­
ing from (5.21). (The uniqueness of the partner 
should be an intrinsic property of a well formalized 
iü-relation.)

B y definition 27' is a phase coexistence system. Its 
domain of states covers regions where 27 also exists 
and others where 27 cannot assume states. So 27' 
exists, e.g., for all points in /[Zi*, Z2*] c (€ * . From  
(5.23) follows immediately that

S2' (Z') =  ai Sz(Zi*) +  a2 $£(Z2* ),
V Z 'e ^ * . (5.24)

5.8. Proposition, (i) Let be <27', Z') defined in 
according to Def. 5.7, and let be again Zq =  
Z i* + Z 2*. Then <27',Zo> is neutrally stable over 
the region

(Z0) : =  r\ [Zq -  V*) (5.25)

14 1 9

X* p{zi*) +  (1 —  X*)p(Z2*)
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i.e.,
Sr  (Z0) = S r  (Zi') + S r  (Z0 -  Zy!) (5.26 

for all Z i' (Zo).
(ii) For all z' of the form

2' = x ’ Zl* + (1 - x ' ) z 2*, x ' e [  0 ,1] (5.27)

holds
^ '(z ')  = yJ Sr(zi*) + (1 — » ') sz {z2*) . (5.28)

(iii) s* '(z' ; zo) =  s*'(2o;zo) (5.29)

for all z’ E /[zi*, Z2*].

Proof, (i) Z i '£ ^ * (Z 0) <>Zi' =  aiZ i*  +  a 2Z2* 
with a* £ [0, 1], i =  1 ,2. Then

Zo — Zi' =  (1 — a i) Z i* +  (1 — 0C2) Z2* ,

and we find in virtue of (5.24)

(Zi') +  S E' (Z0 — Zi') =  $ r (Zi*) + SAZz*)
=  S S’ (Z0) (5.30)

for all Z i' £ (Zo).
(ii) Multiply (5.27) b y Z 'w> 0. Then

Z' :=  Z 'n(z', 1) =  a iZ i*  +  0C2Z2* £ ^ *

and the entropy of <27', Z ') is given by (5.24). 
Dividing the latter expression by Z 'n leads imme­
diately to (5.28).

(iii) Differentiation of (5.28) with respect to x' 
gives

(zi* — z2* ) -p (z ')  =  s£{zi*) — sz (z2*). (5.31) 

Using (5.17) and (5.18) we obtain

(Zl* — Z2*) -p{Zl*) =  <Sv(2l*) — SZ(Z2*)
=  (21* — z2*) -p{z'). (5.32) 

Leaving z' fixed we introduce

z" (x) :=  z' +  --------(z' — zi*) (5.33)
1 — x

for variable x e (0 ,x']. s2 '(z" ( x)) satisfies then an 
analoguous equation as (5.28) (with x' being replaced 
by (x' — x)l( 1 — x)). W ith this we find

z') =  x 5̂ (2i*) +  (1 — *) (2" («))• (5.34)

Differentiating to ^ at >< = 0 changes (5.34) into

0 = *2;(zi*) — «r'(«') +  (s' — 21*) -i>(2') (5.35)

where z' is an arbitrary point of /[z 1*, Z2*]. Since 
zo £ /[zi*, Z2*], Equation (5.32) and (5.35) are valid 
for z' — zo, too. Subtracting the two Eqs. (5.35) for

z' and zo and using (5.32) we arrive at

*r'(2o) — 8Z>{z') +  (z' —  z q )  -p{zo) =  0 ,

which proves (5.29). □
We see from the foregoing results, that for a 

metastable system-state <27, Zo) there exists the 
possibility of a phase-coexistence constitution of 
the same material body in which the state regions 
not accessible in the 27-constitution may now be 
assumed. In this phase-coexistence constitution 27' 
the entropy fundamental function 8 is neutrally 
stable at Zo over the two dimensional double cone 
i^*(Zo) and the specific entropy is neutrally 
stable at zo over /[zi*, Z2*], all assertions being 
consequences of metastability. The specification of 
how m any phases coexist in <27', Zo) requires the 
study of further topological properties in the state 
space by the continuous vairation of Zo itself. This 
and related questions will be treated in a separate 
investigation.

6. Conclusions

Let us summarize what kind of system concept 
did emerge from our assumptions and derived 
results in the foregoing considerations. We have 
incorporated into the formalized theory that every  
thermodynamic system 27 has a fixed set of state 
variables describing all states which may be taken on 
and a single valued entropy fundamental function 
S E\ this being the restrictive part of our approach. 
On the other hand we have incorporated the 
possibility to form new systems from given ones by  
composition of subsystems and by the imposture 
and relaxation of constraints; and we have only 
assumed stability to be valid over a local neighbour­
hood. These two features express the flexible part 
of the approach.

Consider now a system state <27, Z> which in fact 
is only locally stable in a decomposition region 
9{Z ) 5= @z{Z) where 2 z {Z) denotes as before the 
maximal set of states a subsystem m ay assume. W e 
were then able to show, that there must exist a new 
constitution <27a ,Z )  with $ 27a(Z )> S 2 (Z) of the 
same material system, since the interior constraints 
of the composite system

< (27,27);(Z i',Z -Z i')> , 
Z i'£ ^ '(Z ) : =  ®£{Z)\@(Z)

can be relaxed and the outcome is again a thermo­
dynamic system in a locally stable state. Here a
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indexes subregions (Z) cS>' (Z). Then there are 
two possibilities: In all of 3>'(Z) is no further 
equilibrium state o f the composite system which 
would be characterized by a local maximum of 
S(£, 2) • Then there is no connection between the 
<27a , Z> configurations and the 27 configuration 
which could be expressed in terms of equilibrium  
thermodynamics. A  complete microscopic theory  
should be capable to describe all macroscopic 
configurations E, E a in micro-dynamical terms. The 
actual possibilities at the present stage o f the 
microscopic statistical formalism do not scope, 
however, with such an ambitious program. There­
fore it is important, that the second possibility, 
namely the existence of a further local maximum of 
S(z,z) — say at Z{ = Z\*  e Q)\ (Z) — leads to a 
fruitful application of purely thermostatic con­
cepts. In this and only this case we have called 
<(27, Z> metastable. <27i, Z> is then interpretable as 
a phase-coexistence state, where the participating 
phases are system-states o f 27. The region '(Z ) is 
operatively characterized by

<(27,27), (Zi', Z -  Zi')> R n <27x, Z>
•/» <(27,27), ( Z ^ Z - Z i * ) )

for all Zi e3>\ (Z). The states of 27i are described 
by the same set of state variables as for 27. Never­
theless, 27i has new observables which are not 
present in the 27 configuration. These are the density 
differences z%* — zi* where

zi* =  (Z i*1 . . .Z i* w_1)/Zi*w and
=  [(Z i.. .Z " -1) -  (Z i* i.. .Z!*«-i)]/(Z« - Z i* « ) .

One should be aware of the fact that this set up 
comprises a large variety of phenomena, since the 
extensive coordinates Z include also those quantities
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which are only detectable by means o f external 
fields, like magnetic or electric moments etc. The 
density differences are sometimes identified with 
order parameters, so e. g. the mass density difference 
for the fluid phase transition or the density differ­
ence of magnetic moments at zero magnetic field 
for the ferromagnetic phase transition. These 
density differences are fixed in the equilibrium state 
and may be varied only formally. B y construction 
follows that <27i, Z ) for variable Z bridges regions 
where <27, Z ) cannot exist.

Having explored matters in S ’i'(Z )  the next 
alternative is: (Z) equals S>'(Z) =@z(Z)\&)(Z) 
or not. In the first case <27i, Z ) is absolutely stable 
and there exists no other constitution of the 
material body with total observables Z and higher 
entropy. In the second case one knows that there 
is a <272, Z ) with $ X2(Z )>  S ^ Z ) .  I t again has to 
be investigated if <272, Z ) is only locally stable or 
metastable, and so forth. Thus, there m ay be a 
whole hierarchy of system-states <27, Z), <27i,Z>, 
<272, Zy ... for one and the same state tuple Z with 
increasing entropy. The spontaneous transition 
<27i, Zy -> <27i+i, Zy, described at the end of 
Sect. 3, is in reality often a m atter of time, so that 
to the hierarchy of configurations corresponds a 
hierarchy of relaxation times in the non-equilibrium  
treatment of these phenomena. In fact do exist 
many variants of m etastability for real material 
systems which require an adequate formulation of 
the thermodynamic principles.
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